Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catidcl.b | |
|
catidcl.h | |
||
catidcl.i | |
||
catidcl.c | |
||
catidcl.x | |
||
catlid.o | |
||
catlid.y | |
||
catlid.f | |
||
Assertion | catrid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catidcl.b | |
|
2 | catidcl.h | |
|
3 | catidcl.i | |
|
4 | catidcl.c | |
|
5 | catidcl.x | |
|
6 | catlid.o | |
|
7 | catlid.y | |
|
8 | catlid.f | |
|
9 | oveq1 | |
|
10 | id | |
|
11 | 9 10 | eqeq12d | |
12 | oveq2 | |
|
13 | oveq2 | |
|
14 | 13 | oveqd | |
15 | 14 | eqeq1d | |
16 | 12 15 | raleqbidv | |
17 | simpr | |
|
18 | 17 | ralimi | |
19 | 18 | a1i | |
20 | 19 | ss2rabi | |
21 | 1 2 6 4 3 5 | cidval | |
22 | 1 2 6 4 5 | catideu | |
23 | riotacl2 | |
|
24 | 22 23 | syl | |
25 | 21 24 | eqeltrd | |
26 | 20 25 | sselid | |
27 | oveq2 | |
|
28 | 27 | eqeq1d | |
29 | 28 | 2ralbidv | |
30 | 29 | elrab | |
31 | 30 | simprbi | |
32 | 26 31 | syl | |
33 | 16 32 7 | rspcdva | |
34 | 11 33 8 | rspcdva | |