Metamath Proof Explorer


Theorem catrid

Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catidcl.b B=BaseC
catidcl.h H=HomC
catidcl.i 1˙=IdC
catidcl.c φCCat
catidcl.x φXB
catlid.o ·˙=compC
catlid.y φYB
catlid.f φFXHY
Assertion catrid φFXX·˙Y1˙X=F

Proof

Step Hyp Ref Expression
1 catidcl.b B=BaseC
2 catidcl.h H=HomC
3 catidcl.i 1˙=IdC
4 catidcl.c φCCat
5 catidcl.x φXB
6 catlid.o ·˙=compC
7 catlid.y φYB
8 catlid.f φFXHY
9 oveq1 f=FfXX·˙Y1˙X=FXX·˙Y1˙X
10 id f=Ff=F
11 9 10 eqeq12d f=FfXX·˙Y1˙X=fFXX·˙Y1˙X=F
12 oveq2 y=YXHy=XHY
13 oveq2 y=YXX·˙y=XX·˙Y
14 13 oveqd y=YfXX·˙y1˙X=fXX·˙Y1˙X
15 14 eqeq1d y=YfXX·˙y1˙X=ffXX·˙Y1˙X=f
16 12 15 raleqbidv y=YfXHyfXX·˙y1˙X=ffXHYfXX·˙Y1˙X=f
17 simpr fyHXgyX·˙Xf=ffXHyfXX·˙yg=ffXHyfXX·˙yg=f
18 17 ralimi yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fyBfXHyfXX·˙yg=f
19 18 a1i gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fyBfXHyfXX·˙yg=f
20 19 ss2rabi gXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fgXHX|yBfXHyfXX·˙yg=f
21 1 2 6 4 3 5 cidval φ1˙X=ιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
22 1 2 6 4 5 catideu φ∃!gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
23 riotacl2 ∃!gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
24 22 23 syl φιgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
25 21 24 eqeltrd φ1˙XgXHX|yBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
26 20 25 sselid φ1˙XgXHX|yBfXHyfXX·˙yg=f
27 oveq2 g=1˙XfXX·˙yg=fXX·˙y1˙X
28 27 eqeq1d g=1˙XfXX·˙yg=ffXX·˙y1˙X=f
29 28 2ralbidv g=1˙XyBfXHyfXX·˙yg=fyBfXHyfXX·˙y1˙X=f
30 29 elrab 1˙XgXHX|yBfXHyfXX·˙yg=f1˙XXHXyBfXHyfXX·˙y1˙X=f
31 30 simprbi 1˙XgXHX|yBfXHyfXX·˙yg=fyBfXHyfXX·˙y1˙X=f
32 26 31 syl φyBfXHyfXX·˙y1˙X=f
33 16 32 7 rspcdva φfXHYfXX·˙Y1˙X=f
34 11 33 8 rspcdva φFXX·˙Y1˙X=F