Metamath Proof Explorer


Theorem cbvitgdavw2

Description: Change bound variable and domain in an integral. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvitgdavw2.1 φ x = y C = D
cbvitgdavw2.2 φ x = y A = B
Assertion cbvitgdavw2 φ A C dx = B D dy

Proof

Step Hyp Ref Expression
1 cbvitgdavw2.1 φ x = y C = D
2 cbvitgdavw2.2 φ x = y A = B
3 1 fvoveq1d φ x = y C i t = D i t
4 simpr φ x = y x = y
5 4 2 eleq12d φ x = y x A y B
6 5 anbi1d φ x = y x A 0 v y B 0 v
7 6 ifbid φ x = y if x A 0 v v 0 = if y B 0 v v 0
8 3 7 csbeq12dv φ x = y C i t / v if x A 0 v v 0 = D i t / v if y B 0 v v 0
9 8 cbvmptdavw φ x C i t / v if x A 0 v v 0 = y D i t / v if y B 0 v v 0
10 9 fveq2d φ 2 x C i t / v if x A 0 v v 0 = 2 y D i t / v if y B 0 v v 0
11 10 oveq2d φ i t 2 x C i t / v if x A 0 v v 0 = i t 2 y D i t / v if y B 0 v v 0
12 11 sumeq2sdv φ t = 0 3 i t 2 x C i t / v if x A 0 v v 0 = t = 0 3 i t 2 y D i t / v if y B 0 v v 0
13 df-itg A C dx = t = 0 3 i t 2 x C i t / v if x A 0 v v 0
14 df-itg B D dy = t = 0 3 i t 2 y D i t / v if y B 0 v v 0
15 12 13 14 3eqtr4g φ A C dx = B D dy