Metamath Proof Explorer


Theorem cdlemd1

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 29-May-2012)

Ref Expression
Hypotheses cdlemd1.l ˙=K
cdlemd1.j ˙=joinK
cdlemd1.m ˙=meetK
cdlemd1.a A=AtomsK
cdlemd1.h H=LHypK
Assertion cdlemd1 KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR=P˙P˙R˙W˙Q˙Q˙R˙W

Proof

Step Hyp Ref Expression
1 cdlemd1.l ˙=K
2 cdlemd1.j ˙=joinK
3 cdlemd1.m ˙=meetK
4 cdlemd1.a A=AtomsK
5 cdlemd1.h H=LHypK
6 simpll KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QKHL
7 simpr1l KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QPA
8 simpr2l KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QQA
9 simpr31 KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QRA
10 simpr32 KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QPQ
11 simpr33 KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙Q¬R˙P˙Q
12 1 2 3 4 2llnma2 KHLPAQARAPQ¬R˙P˙QR˙P˙R˙Q=R
13 6 7 8 9 10 11 12 syl132anc KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR˙P˙R˙Q=R
14 hllat KHLKLat
15 14 ad2antrr KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QKLat
16 eqid BaseK=BaseK
17 16 4 atbase RARBaseK
18 9 17 syl KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QRBaseK
19 16 4 atbase PAPBaseK
20 7 19 syl KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QPBaseK
21 16 2 latjcom KLatRBaseKPBaseKR˙P=P˙R
22 15 18 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR˙P=P˙R
23 simpl KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QKHLWH
24 simpr1 KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QPA¬P˙W
25 16 1 2 3 4 5 cdlemc1 KHLWHRBaseKPA¬P˙WP˙P˙R˙W=P˙R
26 23 18 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QP˙P˙R˙W=P˙R
27 22 26 eqtr4d KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR˙P=P˙P˙R˙W
28 16 4 atbase QAQBaseK
29 8 28 syl KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QQBaseK
30 16 2 latjcom KLatRBaseKQBaseKR˙Q=Q˙R
31 15 18 29 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR˙Q=Q˙R
32 simpr2 KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QQA¬Q˙W
33 16 1 2 3 4 5 cdlemc1 KHLWHRBaseKQA¬Q˙WQ˙Q˙R˙W=Q˙R
34 23 18 32 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QQ˙Q˙R˙W=Q˙R
35 31 34 eqtr4d KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR˙Q=Q˙Q˙R˙W
36 27 35 oveq12d KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR˙P˙R˙Q=P˙P˙R˙W˙Q˙Q˙R˙W
37 13 36 eqtr3d KHLWHPA¬P˙WQA¬Q˙WRAPQ¬R˙P˙QR=P˙P˙R˙W˙Q˙Q˙R˙W