| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemd1.l |
|
| 2 |
|
cdlemd1.j |
|
| 3 |
|
cdlemd1.m |
|
| 4 |
|
cdlemd1.a |
|
| 5 |
|
cdlemd1.h |
|
| 6 |
|
simpll |
|
| 7 |
|
simpr1l |
|
| 8 |
|
simpr2l |
|
| 9 |
|
simpr31 |
|
| 10 |
|
simpr32 |
|
| 11 |
|
simpr33 |
|
| 12 |
1 2 3 4
|
2llnma2 |
|
| 13 |
6 7 8 9 10 11 12
|
syl132anc |
|
| 14 |
|
hllat |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
eqid |
|
| 17 |
16 4
|
atbase |
|
| 18 |
9 17
|
syl |
|
| 19 |
16 4
|
atbase |
|
| 20 |
7 19
|
syl |
|
| 21 |
16 2
|
latjcom |
|
| 22 |
15 18 20 21
|
syl3anc |
|
| 23 |
|
simpl |
|
| 24 |
|
simpr1 |
|
| 25 |
16 1 2 3 4 5
|
cdlemc1 |
|
| 26 |
23 18 24 25
|
syl3anc |
|
| 27 |
22 26
|
eqtr4d |
|
| 28 |
16 4
|
atbase |
|
| 29 |
8 28
|
syl |
|
| 30 |
16 2
|
latjcom |
|
| 31 |
15 18 29 30
|
syl3anc |
|
| 32 |
|
simpr2 |
|
| 33 |
16 1 2 3 4 5
|
cdlemc1 |
|
| 34 |
23 18 32 33
|
syl3anc |
|
| 35 |
31 34
|
eqtr4d |
|
| 36 |
27 35
|
oveq12d |
|
| 37 |
13 36
|
eqtr3d |
|