Metamath Proof Explorer


Theorem cdleme0fN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 14-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
cdleme0c.3 V=P˙R˙W
Assertion cdleme0fN KHLWHPA¬P˙WQARAVP

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 cdleme0c.3 V=P˙R˙W
8 simp1l KHLWHPA¬P˙WQARAKHL
9 8 hllatd KHLWHPA¬P˙WQARAKLat
10 simp2l KHLWHPA¬P˙WQARAPA
11 eqid BaseK=BaseK
12 11 4 atbase PAPBaseK
13 10 12 syl KHLWHPA¬P˙WQARAPBaseK
14 simp3r KHLWHPA¬P˙WQARARA
15 11 4 atbase RARBaseK
16 14 15 syl KHLWHPA¬P˙WQARARBaseK
17 11 2 latjcl KLatPBaseKRBaseKP˙RBaseK
18 9 13 16 17 syl3anc KHLWHPA¬P˙WQARAP˙RBaseK
19 simp1r KHLWHPA¬P˙WQARAWH
20 11 5 lhpbase WHWBaseK
21 19 20 syl KHLWHPA¬P˙WQARAWBaseK
22 11 1 3 latmle2 KLatP˙RBaseKWBaseKP˙R˙W˙W
23 9 18 21 22 syl3anc KHLWHPA¬P˙WQARAP˙R˙W˙W
24 7 23 eqbrtrid KHLWHPA¬P˙WQARAV˙W
25 simp2r KHLWHPA¬P˙WQARA¬P˙W
26 nbrne2 V˙W¬P˙WVP
27 24 25 26 syl2anc KHLWHPA¬P˙WQARAVP