Metamath Proof Explorer


Theorem cdleme15d

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, s_1 \/ t_1 <_ w. C and X represent s_1 and t_1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
cdleme15.c C=P˙S˙W
cdleme15.x X=P˙T˙W
Assertion cdleme15d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TX˙C˙W

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 cdleme15.c C=P˙S˙W
10 cdleme15.x X=P˙T˙W
11 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKHL
12 11 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKLat
13 simp12l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPA
14 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TTA
15 eqid BaseK=BaseK
16 15 2 4 hlatjcl KHLPATAP˙TBaseK
17 11 13 14 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙TBaseK
18 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWH
19 15 5 lhpbase WHWBaseK
20 18 19 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWBaseK
21 15 1 3 latmle2 KLatP˙TBaseKWBaseKP˙T˙W˙W
22 12 17 20 21 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙T˙W˙W
23 10 22 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TX˙W
24 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TSA
25 15 2 4 hlatjcl KHLPASAP˙SBaseK
26 11 13 24 25 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙SBaseK
27 15 1 3 latmle2 KLatP˙SBaseKWBaseKP˙S˙W˙W
28 12 26 20 27 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙S˙W˙W
29 9 28 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TC˙W
30 15 3 latmcl KLatP˙TBaseKWBaseKP˙T˙WBaseK
31 12 17 20 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙T˙WBaseK
32 10 31 eqeltrid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TXBaseK
33 15 3 latmcl KLatP˙SBaseKWBaseKP˙S˙WBaseK
34 12 26 20 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TP˙S˙WBaseK
35 9 34 eqeltrid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TCBaseK
36 15 1 2 latjle12 KLatXBaseKCBaseKWBaseKX˙WC˙WX˙C˙W
37 12 32 35 20 36 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TX˙WC˙WX˙C˙W
38 23 29 37 mpbi2and KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TX˙C˙W