Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, s_1 \/ t_1 <_ w. C and X represent s_1 and t_1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme12.l | |
|
cdleme12.j | |
||
cdleme12.m | |
||
cdleme12.a | |
||
cdleme12.h | |
||
cdleme12.u | |
||
cdleme12.f | |
||
cdleme12.g | |
||
cdleme15.c | |
||
cdleme15.x | |
||
Assertion | cdleme15d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme12.l | |
|
2 | cdleme12.j | |
|
3 | cdleme12.m | |
|
4 | cdleme12.a | |
|
5 | cdleme12.h | |
|
6 | cdleme12.u | |
|
7 | cdleme12.f | |
|
8 | cdleme12.g | |
|
9 | cdleme15.c | |
|
10 | cdleme15.x | |
|
11 | simp11l | |
|
12 | 11 | hllatd | |
13 | simp12l | |
|
14 | simp22l | |
|
15 | eqid | |
|
16 | 15 2 4 | hlatjcl | |
17 | 11 13 14 16 | syl3anc | |
18 | simp11r | |
|
19 | 15 5 | lhpbase | |
20 | 18 19 | syl | |
21 | 15 1 3 | latmle2 | |
22 | 12 17 20 21 | syl3anc | |
23 | 10 22 | eqbrtrid | |
24 | simp21l | |
|
25 | 15 2 4 | hlatjcl | |
26 | 11 13 24 25 | syl3anc | |
27 | 15 1 3 | latmle2 | |
28 | 12 26 20 27 | syl3anc | |
29 | 9 28 | eqbrtrid | |
30 | 15 3 | latmcl | |
31 | 12 17 20 30 | syl3anc | |
32 | 10 31 | eqeltrid | |
33 | 15 3 | latmcl | |
34 | 12 26 20 33 | syl3anc | |
35 | 9 34 | eqeltrid | |
36 | 15 1 2 | latjle12 | |
37 | 12 32 35 20 36 | syl13anc | |
38 | 23 29 37 | mpbi2and | |