Metamath Proof Explorer


Theorem cdleme16e

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. F and G represent f(s) and f(t) respectively. We show, in their notation, (s \/ t) /\ (f(s) \/ f(t))=(s \/ t) /\ w. (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙=K
cdleme12.j ˙=joinK
cdleme12.m ˙=meetK
cdleme12.a A=AtomsK
cdleme12.h H=LHypK
cdleme12.u U=P˙Q˙W
cdleme12.f F=S˙U˙Q˙P˙S˙W
cdleme12.g G=T˙U˙Q˙P˙T˙W
Assertion cdleme16e KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G=S˙T˙W

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙=K
2 cdleme12.j ˙=joinK
3 cdleme12.m ˙=meetK
4 cdleme12.a A=AtomsK
5 cdleme12.h H=LHypK
6 cdleme12.u U=P˙Q˙W
7 cdleme12.f F=S˙U˙Q˙P˙S˙W
8 cdleme12.g G=T˙U˙Q˙P˙T˙W
9 simp11l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKHL
10 9 hllatd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKLat
11 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TSA
12 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TTA
13 eqid BaseK=BaseK
14 13 2 4 hlatjcl KHLSATAS˙TBaseK
15 9 11 12 14 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙TBaseK
16 simp11 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKHLWH
17 simp12 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPA¬P˙W
18 simp13 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TQA¬Q˙W
19 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TSA¬S˙W
20 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TPQ
21 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬S˙P˙Q
22 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QFA
23 16 17 18 19 20 21 22 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TFA
24 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TTA¬T˙W
25 simp32 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬T˙P˙Q
26 1 2 3 4 5 6 8 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WTA¬T˙WPQ¬T˙P˙QGA
27 16 17 18 24 20 25 26 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TGA
28 13 2 4 hlatjcl KHLFAGAF˙GBaseK
29 9 23 27 28 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TF˙GBaseK
30 13 1 3 latmle1 KLatS˙TBaseKF˙GBaseKS˙T˙F˙G˙S˙T
31 10 15 29 30 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙S˙T
32 1 2 3 4 5 6 7 8 cdleme15 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙W
33 13 3 latmcl KLatS˙TBaseKF˙GBaseKS˙T˙F˙GBaseK
34 10 15 29 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙GBaseK
35 simp11r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWH
36 13 5 lhpbase WHWBaseK
37 35 36 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TWBaseK
38 13 1 3 latlem12 KLatS˙T˙F˙GBaseKS˙TBaseKWBaseKS˙T˙F˙G˙S˙TS˙T˙F˙G˙WS˙T˙F˙G˙S˙T˙W
39 10 34 15 37 38 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙S˙TS˙T˙F˙G˙WS˙T˙F˙G˙S˙T˙W
40 31 32 39 mpbi2and KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙S˙T˙W
41 hlatl KHLKAtLat
42 9 41 syl KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TKAtLat
43 1 2 3 4 5 6 7 8 cdleme16d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙GA
44 simp21r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙T¬S˙W
45 simp23r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TST
46 1 2 3 4 5 lhpat KHLWHSA¬S˙WTASTS˙T˙WA
47 9 35 11 44 12 45 46 syl222anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙WA
48 1 4 atcmp KAtLatS˙T˙F˙GAS˙T˙WAS˙T˙F˙G˙S˙T˙WS˙T˙F˙G=S˙T˙W
49 42 43 47 48 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G˙S˙T˙WS˙T˙F˙G=S˙T˙W
50 40 49 mpbid KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙Q¬U˙S˙TS˙T˙F˙G=S˙T˙W