Metamath Proof Explorer


Theorem cdleme17c

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. C represents s_1. We show, in their notation, (p \/ q) /\ (q \/ s_1)=q. (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses cdleme17.l ˙=K
cdleme17.j ˙=joinK
cdleme17.m ˙=meetK
cdleme17.a A=AtomsK
cdleme17.h H=LHypK
cdleme17.u U=P˙Q˙W
cdleme17.f F=S˙U˙Q˙P˙S˙W
cdleme17.g G=P˙Q˙F˙P˙S˙W
cdleme17.c C=P˙S˙W
Assertion cdleme17c KHLWHPA¬P˙WQASA¬S˙P˙QP˙Q˙Q˙C=Q

Proof

Step Hyp Ref Expression
1 cdleme17.l ˙=K
2 cdleme17.j ˙=joinK
3 cdleme17.m ˙=meetK
4 cdleme17.a A=AtomsK
5 cdleme17.h H=LHypK
6 cdleme17.u U=P˙Q˙W
7 cdleme17.f F=S˙U˙Q˙P˙S˙W
8 cdleme17.g G=P˙Q˙F˙P˙S˙W
9 cdleme17.c C=P˙S˙W
10 simp1l KHLWHPA¬P˙WQASA¬S˙P˙QKHL
11 simp2l KHLWHPA¬P˙WQASA¬S˙P˙QPA
12 simp31 KHLWHPA¬P˙WQASA¬S˙P˙QQA
13 2 4 hlatjcom KHLPAQAP˙Q=Q˙P
14 10 11 12 13 syl3anc KHLWHPA¬P˙WQASA¬S˙P˙QP˙Q=Q˙P
15 14 oveq1d KHLWHPA¬P˙WQASA¬S˙P˙QP˙Q˙Q˙C=Q˙P˙Q˙C
16 simp1r KHLWHPA¬P˙WQASA¬S˙P˙QWH
17 simp2r KHLWHPA¬P˙WQASA¬S˙P˙Q¬P˙W
18 simp32 KHLWHPA¬P˙WQASA¬S˙P˙QSA
19 10 hllatd KHLWHPA¬P˙WQASA¬S˙P˙QKLat
20 eqid BaseK=BaseK
21 20 4 atbase SASBaseK
22 18 21 syl KHLWHPA¬P˙WQASA¬S˙P˙QSBaseK
23 20 4 atbase PAPBaseK
24 11 23 syl KHLWHPA¬P˙WQASA¬S˙P˙QPBaseK
25 20 4 atbase QAQBaseK
26 12 25 syl KHLWHPA¬P˙WQASA¬S˙P˙QQBaseK
27 simp33 KHLWHPA¬P˙WQASA¬S˙P˙Q¬S˙P˙Q
28 20 1 2 latnlej1l KLatSBaseKPBaseKQBaseK¬S˙P˙QSP
29 28 necomd KLatSBaseKPBaseKQBaseK¬S˙P˙QPS
30 19 22 24 26 27 29 syl131anc KHLWHPA¬P˙WQASA¬S˙P˙QPS
31 1 2 3 4 5 9 cdleme9a KHLWHPA¬P˙WSAPSCA
32 10 16 11 17 18 30 31 syl222anc KHLWHPA¬P˙WQASA¬S˙P˙QCA
33 1 2 3 4 5 6 7 8 9 cdleme17b KHLWHPA¬P˙WQASA¬S˙P˙Q¬C˙P˙Q
34 1 2 3 4 2llnma1 KHLPAQACA¬C˙P˙QQ˙P˙Q˙C=Q
35 10 11 12 32 33 34 syl131anc KHLWHPA¬P˙WQASA¬S˙P˙QQ˙P˙Q˙C=Q
36 15 35 eqtrd KHLWHPA¬P˙WQASA¬S˙P˙QP˙Q˙Q˙C=Q