Metamath Proof Explorer


Theorem cdleme20l

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, penultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t) respectively. (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙=K
cdleme19.j ˙=joinK
cdleme19.m ˙=meetK
cdleme19.a A=AtomsK
cdleme19.h H=LHypK
cdleme19.u U=P˙Q˙W
cdleme19.f F=S˙U˙Q˙P˙S˙W
cdleme19.g G=T˙U˙Q˙P˙T˙W
cdleme19.d D=R˙S˙W
cdleme19.y Y=R˙T˙W
cdleme20.v V=S˙T˙W
Assertion cdleme20l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y=P˙Q˙F˙D

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙=K
2 cdleme19.j ˙=joinK
3 cdleme19.m ˙=meetK
4 cdleme19.a A=AtomsK
5 cdleme19.h H=LHypK
6 cdleme19.u U=P˙Q˙W
7 cdleme19.f F=S˙U˙Q˙P˙S˙W
8 cdleme19.g G=T˙U˙Q˙P˙T˙W
9 cdleme19.d D=R˙S˙W
10 cdleme19.y Y=R˙T˙W
11 cdleme20.v V=S˙T˙W
12 1 2 3 4 5 6 7 8 9 10 11 cdleme20i KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y˙P˙Q
13 simp11l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKHL
14 simp11 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKHLWH
15 simp12 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPA¬P˙W
16 simp13 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TQA¬Q˙W
17 simp21l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TRA
18 simp22l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TSA
19 simp22r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙W
20 simp31l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPQ
21 simp321 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬S˙P˙Q
22 simp323 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TR˙P˙Q
23 1 2 3 4 5 6 7 8 9 10 11 cdleme20l1 KHLWHPA¬P˙WQA¬Q˙WRASA¬S˙WPQ¬S˙P˙QR˙P˙QF˙DLLinesK
24 14 15 16 17 18 19 20 21 22 23 syl333anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙DLLinesK
25 simp23l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TTA
26 simp23r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬T˙W
27 simp322 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙T¬T˙P˙Q
28 eqid T˙S˙W=T˙S˙W
29 1 2 3 4 5 6 8 7 10 9 28 cdleme20l1 KHLWHPA¬P˙WQA¬Q˙WRATA¬T˙WPQ¬T˙P˙QR˙P˙QG˙YLLinesK
30 14 15 16 17 25 26 20 27 22 29 syl333anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TG˙YLLinesK
31 simp12l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TPA
32 simp13l KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TQA
33 eqid LLinesK=LLinesK
34 2 4 33 llni2 KHLPAQAPQP˙QLLinesK
35 13 31 32 20 34 syl31anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TP˙QLLinesK
36 1 2 3 4 5 6 7 8 9 10 11 cdleme20l2 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙YA
37 simp22 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TSA¬S˙W
38 simp21 KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TRA¬R˙W
39 1 2 3 4 5 6 7 8 9 10 11 cdleme20k KHLWHPAQASA¬S˙WRA¬R˙W¬S˙P˙QR˙P˙QF˙DP˙Q
40 14 31 32 37 38 21 22 39 syl322anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙DP˙Q
41 1 2 3 4 33 llnexchb2 KHLF˙DLLinesKG˙YLLinesKP˙QLLinesKF˙D˙G˙YAF˙DP˙QF˙D˙G˙Y˙P˙QF˙D˙G˙Y=F˙D˙P˙Q
42 13 24 30 35 36 40 41 syl132anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y˙P˙QF˙D˙G˙Y=F˙D˙P˙Q
43 12 42 mpbid KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y=F˙D˙P˙Q
44 13 hllatd KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TKLat
45 eqid BaseK=BaseK
46 45 2 4 hlatjcl KHLPAQAP˙QBaseK
47 13 31 32 46 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TP˙QBaseK
48 simp11r KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TWH
49 1 2 3 4 5 6 7 45 cdleme1b KHLWHPAQASAFBaseK
50 13 48 31 32 18 49 syl23anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TFBaseK
51 1 2 3 4 5 9 45 cdlemedb KHLWHRASADBaseK
52 13 48 17 18 51 syl22anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TDBaseK
53 45 2 latjcl KLatFBaseKDBaseKF˙DBaseK
54 44 50 52 53 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙DBaseK
55 45 3 latmcom KLatP˙QBaseKF˙DBaseKP˙Q˙F˙D=F˙D˙P˙Q
56 44 47 54 55 syl3anc KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TP˙Q˙F˙D=F˙D˙P˙Q
57 43 56 eqtr4d KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WSA¬S˙WTA¬T˙WPQST¬S˙P˙Q¬T˙P˙QR˙P˙Q¬R˙S˙T¬U˙S˙TF˙D˙G˙Y=P˙Q˙F˙D