Metamath Proof Explorer


Theorem cdleme20zN

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme20z.l ˙=K
cdleme20z.j ˙=joinK
cdleme20z.m ˙=meetK
cdleme20z.a A=AtomsK
Assertion cdleme20zN KHLRASATAST¬R˙S˙TS˙R˙T=0.K

Proof

Step Hyp Ref Expression
1 cdleme20z.l ˙=K
2 cdleme20z.j ˙=joinK
3 cdleme20z.m ˙=meetK
4 cdleme20z.a A=AtomsK
5 hllat KHLKLat
6 5 3ad2ant1 KHLRASATAST¬R˙S˙TKLat
7 simp1 KHLRASATAST¬R˙S˙TKHL
8 simp22 KHLRASATAST¬R˙S˙TSA
9 simp21 KHLRASATAST¬R˙S˙TRA
10 eqid BaseK=BaseK
11 10 2 4 hlatjcl KHLSARAS˙RBaseK
12 7 8 9 11 syl3anc KHLRASATAST¬R˙S˙TS˙RBaseK
13 simp23 KHLRASATAST¬R˙S˙TTA
14 10 4 atbase TATBaseK
15 13 14 syl KHLRASATAST¬R˙S˙TTBaseK
16 10 3 latmcom KLatS˙RBaseKTBaseKS˙R˙T=T˙S˙R
17 6 12 15 16 syl3anc KHLRASATAST¬R˙S˙TS˙R˙T=T˙S˙R
18 simp3r KHLRASATAST¬R˙S˙T¬R˙S˙T
19 hlcvl KHLKCvLat
20 19 3ad2ant1 KHLRASATAST¬R˙S˙TKCvLat
21 simp3l KHLRASATAST¬R˙S˙TST
22 21 necomd KHLRASATAST¬R˙S˙TTS
23 1 2 4 cvlatexch1 KCvLatTARASATST˙S˙RR˙S˙T
24 20 13 9 8 22 23 syl131anc KHLRASATAST¬R˙S˙TT˙S˙RR˙S˙T
25 18 24 mtod KHLRASATAST¬R˙S˙T¬T˙S˙R
26 hlatl KHLKAtLat
27 26 3ad2ant1 KHLRASATAST¬R˙S˙TKAtLat
28 eqid 0.K=0.K
29 10 1 3 28 4 atnle KAtLatTAS˙RBaseK¬T˙S˙RT˙S˙R=0.K
30 27 13 12 29 syl3anc KHLRASATAST¬R˙S˙T¬T˙S˙RT˙S˙R=0.K
31 25 30 mpbid KHLRASATAST¬R˙S˙TT˙S˙R=0.K
32 17 31 eqtrd KHLRASATAST¬R˙S˙TS˙R˙T=0.K