Metamath Proof Explorer


Theorem cdleme23c

Description: Part of proof of Lemma E in Crawley p. 113, 4th paragraph, 6th line on p. 115. (Contributed by NM, 8-Dec-2012)

Ref Expression
Hypotheses cdleme23.b B=BaseK
cdleme23.l ˙=K
cdleme23.j ˙=joinK
cdleme23.m ˙=meetK
cdleme23.a A=AtomsK
cdleme23.h H=LHypK
cdleme23.v V=S˙T˙X˙W
Assertion cdleme23c KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙V

Proof

Step Hyp Ref Expression
1 cdleme23.b B=BaseK
2 cdleme23.l ˙=K
3 cdleme23.j ˙=joinK
4 cdleme23.m ˙=meetK
5 cdleme23.a A=AtomsK
6 cdleme23.h H=LHypK
7 cdleme23.v V=S˙T˙X˙W
8 simp11l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XKHL
9 8 hllatd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XKLat
10 simp12l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XSA
11 1 5 atbase SASB
12 10 11 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XSB
13 simp13l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XTA
14 1 5 atbase TATB
15 13 14 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XTB
16 1 2 3 latlej1 KLatSBTBS˙S˙T
17 9 12 15 16 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙S˙T
18 simp2l KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XXB
19 simp11r KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XWH
20 1 6 lhpbase WHWB
21 19 20 syl KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XWB
22 1 4 latmcl KLatXBWBX˙WB
23 9 18 21 22 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XX˙WB
24 1 2 3 latlej1 KLatSBX˙WBS˙S˙X˙W
25 9 12 23 24 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙S˙X˙W
26 simp32 KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙X˙W=X
27 simp33 KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XT˙X˙W=X
28 26 27 eqtr4d KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙X˙W=T˙X˙W
29 25 28 breqtrd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙X˙W
30 1 3 5 hlatjcl KHLSATAS˙TB
31 8 10 13 30 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙TB
32 1 3 latjcl KLatTBX˙WBT˙X˙WB
33 9 15 23 32 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XT˙X˙WB
34 1 2 4 latlem12 KLatSBS˙TBT˙X˙WBS˙S˙TS˙T˙X˙WS˙S˙T˙T˙X˙W
35 9 12 31 33 34 syl13anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙S˙TS˙T˙X˙WS˙S˙T˙T˙X˙W
36 17 29 35 mpbi2and KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙S˙T˙T˙X˙W
37 7 oveq2i T˙V=T˙S˙T˙X˙W
38 1 2 3 latlej2 KLatSBTBT˙S˙T
39 9 12 15 38 syl3anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XT˙S˙T
40 1 2 3 4 5 atmod3i1 KHLTAS˙TBX˙WBT˙S˙TT˙S˙T˙X˙W=S˙T˙T˙X˙W
41 8 13 31 23 39 40 syl131anc KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XT˙S˙T˙X˙W=S˙T˙T˙X˙W
42 37 41 eqtrid KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XT˙V=S˙T˙T˙X˙W
43 36 42 breqtrrd KHLWHSA¬S˙WTA¬T˙WXB¬X˙WSTS˙X˙W=XT˙X˙W=XS˙T˙V