Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme35.l |
|
2 |
|
cdleme35.j |
|
3 |
|
cdleme35.m |
|
4 |
|
cdleme35.a |
|
5 |
|
cdleme35.h |
|
6 |
|
cdleme35.u |
|
7 |
|
cdleme35.f |
|
8 |
7
|
oveq2i |
|
9 |
|
simp11l |
|
10 |
|
simp13l |
|
11 |
|
simp2rl |
|
12 |
|
simp11 |
|
13 |
|
simp12 |
|
14 |
|
simp2l |
|
15 |
1 2 3 4 5 6
|
cdleme0a |
|
16 |
12 13 10 14 15
|
syl112anc |
|
17 |
|
eqid |
|
18 |
17 2 4
|
hlatjcl |
|
19 |
9 11 16 18
|
syl3anc |
|
20 |
9
|
hllatd |
|
21 |
17 4
|
atbase |
|
22 |
10 21
|
syl |
|
23 |
|
simp12l |
|
24 |
17 2 4
|
hlatjcl |
|
25 |
9 23 11 24
|
syl3anc |
|
26 |
|
simp11r |
|
27 |
17 5
|
lhpbase |
|
28 |
26 27
|
syl |
|
29 |
17 3
|
latmcl |
|
30 |
20 25 28 29
|
syl3anc |
|
31 |
17 2
|
latjcl |
|
32 |
20 22 30 31
|
syl3anc |
|
33 |
17 1 2
|
latlej1 |
|
34 |
20 22 30 33
|
syl3anc |
|
35 |
17 1 2 3 4
|
atmod1i1 |
|
36 |
9 10 19 32 34 35
|
syl131anc |
|
37 |
1 2 3 4 5 6 7
|
cdleme35b |
|
38 |
17 2
|
latjcl |
|
39 |
20 22 19 38
|
syl3anc |
|
40 |
17 1 3
|
latleeqm2 |
|
41 |
20 32 39 40
|
syl3anc |
|
42 |
37 41
|
mpbid |
|
43 |
36 42
|
eqtrd |
|
44 |
8 43
|
eqtrid |
|