Metamath Proof Explorer


Theorem cdleme35c

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙=K
cdleme35.j ˙=joinK
cdleme35.m ˙=meetK
cdleme35.a A=AtomsK
cdleme35.h H=LHypK
cdleme35.u U=P˙Q˙W
cdleme35.f F=R˙U˙Q˙P˙R˙W
Assertion cdleme35c KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙F=Q˙P˙R˙W

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙=K
2 cdleme35.j ˙=joinK
3 cdleme35.m ˙=meetK
4 cdleme35.a A=AtomsK
5 cdleme35.h H=LHypK
6 cdleme35.u U=P˙Q˙W
7 cdleme35.f F=R˙U˙Q˙P˙R˙W
8 7 oveq2i Q˙F=Q˙R˙U˙Q˙P˙R˙W
9 simp11l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHL
10 simp13l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA
11 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA
12 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHLWH
13 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA¬P˙W
14 simp2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPQ
15 1 2 3 4 5 6 cdleme0a KHLWHPA¬P˙WQAPQUA
16 12 13 10 14 15 syl112anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QUA
17 eqid BaseK=BaseK
18 17 2 4 hlatjcl KHLRAUAR˙UBaseK
19 9 11 16 18 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR˙UBaseK
20 9 hllatd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKLat
21 17 4 atbase QAQBaseK
22 10 21 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQBaseK
23 simp12l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA
24 17 2 4 hlatjcl KHLPARAP˙RBaseK
25 9 23 11 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙RBaseK
26 simp11r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QWH
27 17 5 lhpbase WHWBaseK
28 26 27 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QWBaseK
29 17 3 latmcl KLatP˙RBaseKWBaseKP˙R˙WBaseK
30 20 25 28 29 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QP˙R˙WBaseK
31 17 2 latjcl KLatQBaseKP˙R˙WBaseKQ˙P˙R˙WBaseK
32 20 22 30 31 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙R˙WBaseK
33 17 1 2 latlej1 KLatQBaseKP˙R˙WBaseKQ˙Q˙P˙R˙W
34 20 22 30 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙Q˙P˙R˙W
35 17 1 2 3 4 atmod1i1 KHLQAR˙UBaseKQ˙P˙R˙WBaseKQ˙Q˙P˙R˙WQ˙R˙U˙Q˙P˙R˙W=Q˙R˙U˙Q˙P˙R˙W
36 9 10 19 32 34 35 syl131anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙R˙U˙Q˙P˙R˙W=Q˙R˙U˙Q˙P˙R˙W
37 1 2 3 4 5 6 7 cdleme35b KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙R˙W˙Q˙R˙U
38 17 2 latjcl KLatQBaseKR˙UBaseKQ˙R˙UBaseK
39 20 22 19 38 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙R˙UBaseK
40 17 1 3 latleeqm2 KLatQ˙P˙R˙WBaseKQ˙R˙UBaseKQ˙P˙R˙W˙Q˙R˙UQ˙R˙U˙Q˙P˙R˙W=Q˙P˙R˙W
41 20 32 39 40 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙P˙R˙W˙Q˙R˙UQ˙R˙U˙Q˙P˙R˙W=Q˙P˙R˙W
42 37 41 mpbid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙R˙U˙Q˙P˙R˙W=Q˙P˙R˙W
43 36 42 eqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙R˙U˙Q˙P˙R˙W=Q˙P˙R˙W
44 8 43 eqtrid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQ˙F=Q˙P˙R˙W