Metamath Proof Explorer


Theorem cdleme35c

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l = ( le ‘ 𝐾 )
cdleme35.j = ( join ‘ 𝐾 )
cdleme35.m = ( meet ‘ 𝐾 )
cdleme35.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme35.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme35.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme35.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
Assertion cdleme35c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄 𝐹 ) = ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdleme35.l = ( le ‘ 𝐾 )
2 cdleme35.j = ( join ‘ 𝐾 )
3 cdleme35.m = ( meet ‘ 𝐾 )
4 cdleme35.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme35.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme35.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme35.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
8 7 oveq2i ( 𝑄 𝐹 ) = ( 𝑄 ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
9 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝐾 ∈ HL )
10 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑄𝐴 )
11 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅𝐴 )
12 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
14 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑃𝑄 )
15 1 2 3 4 5 6 cdleme0a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑈𝐴 )
16 12 13 10 14 15 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑈𝐴 )
17 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
18 17 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴 ) → ( 𝑅 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
19 9 11 16 18 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑅 𝑈 ) ∈ ( Base ‘ 𝐾 ) )
20 9 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝐾 ∈ Lat )
21 17 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
22 10 21 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
23 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑃𝐴 )
24 17 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴 ) → ( 𝑃 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
25 9 23 11 24 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑃 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
26 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑊𝐻 )
27 17 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
28 26 27 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
29 17 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑅 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 𝑅 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
30 20 25 28 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝑃 𝑅 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) )
31 17 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑅 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) )
32 20 22 30 31 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) )
33 17 1 2 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 𝑅 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → 𝑄 ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
34 20 22 30 33 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑄 ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
35 17 1 2 3 4 atmod1i1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴 ∧ ( 𝑅 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑄 ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) → ( 𝑄 ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) ) = ( ( 𝑄 ( 𝑅 𝑈 ) ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
36 9 10 19 32 34 35 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄 ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) ) = ( ( 𝑄 ( 𝑅 𝑈 ) ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
37 1 2 3 4 5 6 7 cdleme35b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ( 𝑄 ( 𝑅 𝑈 ) ) )
38 17 2 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ( 𝑅 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
39 20 22 19 38 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄 ( 𝑅 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) )
40 17 1 3 latleeqm2 ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ( 𝑅 𝑈 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ( 𝑄 ( 𝑅 𝑈 ) ) ↔ ( ( 𝑄 ( 𝑅 𝑈 ) ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) = ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
41 20 32 39 40 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ( 𝑄 ( 𝑅 𝑈 ) ) ↔ ( ( 𝑄 ( 𝑅 𝑈 ) ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) = ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
42 37 41 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝑄 ( 𝑅 𝑈 ) ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) = ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
43 36 42 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄 ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) ) = ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
44 8 43 eqtrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄 𝐹 ) = ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )