Metamath Proof Explorer


Theorem cdleme42a

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 3-Mar-2013)

Ref Expression
Hypotheses cdleme42.b B=BaseK
cdleme42.l ˙=K
cdleme42.j ˙=joinK
cdleme42.m ˙=meetK
cdleme42.a A=AtomsK
cdleme42.h H=LHypK
cdleme42.v V=R˙S˙W
Assertion cdleme42a KHLWHRA¬R˙WSA¬S˙WR˙S=R˙V

Proof

Step Hyp Ref Expression
1 cdleme42.b B=BaseK
2 cdleme42.l ˙=K
3 cdleme42.j ˙=joinK
4 cdleme42.m ˙=meetK
5 cdleme42.a A=AtomsK
6 cdleme42.h H=LHypK
7 cdleme42.v V=R˙S˙W
8 eqid 1.K=1.K
9 2 3 8 5 6 lhpjat2 KHLWHRA¬R˙WR˙W=1.K
10 9 3adant3 KHLWHRA¬R˙WSA¬S˙WR˙W=1.K
11 10 oveq2d KHLWHRA¬R˙WSA¬S˙WR˙S˙R˙W=R˙S˙1.K
12 7 oveq2i R˙V=R˙R˙S˙W
13 simp1l KHLWHRA¬R˙WSA¬S˙WKHL
14 simp2l KHLWHRA¬R˙WSA¬S˙WRA
15 simp3l KHLWHRA¬R˙WSA¬S˙WSA
16 1 3 5 hlatjcl KHLRASAR˙SB
17 13 14 15 16 syl3anc KHLWHRA¬R˙WSA¬S˙WR˙SB
18 simp1r KHLWHRA¬R˙WSA¬S˙WWH
19 1 6 lhpbase WHWB
20 18 19 syl KHLWHRA¬R˙WSA¬S˙WWB
21 2 3 5 hlatlej1 KHLRASAR˙R˙S
22 13 14 15 21 syl3anc KHLWHRA¬R˙WSA¬S˙WR˙R˙S
23 1 2 3 4 5 atmod3i1 KHLRAR˙SBWBR˙R˙SR˙R˙S˙W=R˙S˙R˙W
24 13 14 17 20 22 23 syl131anc KHLWHRA¬R˙WSA¬S˙WR˙R˙S˙W=R˙S˙R˙W
25 12 24 eqtr2id KHLWHRA¬R˙WSA¬S˙WR˙S˙R˙W=R˙V
26 hlol KHLKOL
27 13 26 syl KHLWHRA¬R˙WSA¬S˙WKOL
28 1 4 8 olm11 KOLR˙SBR˙S˙1.K=R˙S
29 27 17 28 syl2anc KHLWHRA¬R˙WSA¬S˙WR˙S˙1.K=R˙S
30 11 25 29 3eqtr3rd KHLWHRA¬R˙WSA¬S˙WR˙S=R˙V