Metamath Proof Explorer


Theorem cdleme48d

Description: TODO: fix comment. (Contributed by NM, 8-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b B=BaseK
cdlemef46g.l ˙=K
cdlemef46g.j ˙=joinK
cdlemef46g.m ˙=meetK
cdlemef46g.a A=AtomsK
cdlemef46g.h H=LHypK
cdlemef46g.u U=P˙Q˙W
cdlemef46g.d D=t˙U˙Q˙P˙t˙W
cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
cdlemef46.v V=Q˙P˙W
cdlemef46.n N=v˙V˙P˙Q˙v˙W
cdlemefs46.o O=Q˙P˙N˙u˙v˙W
cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
Assertion cdleme48d KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XGFX=X

Proof

Step Hyp Ref Expression
1 cdlemef46g.b B=BaseK
2 cdlemef46g.l ˙=K
3 cdlemef46g.j ˙=joinK
4 cdlemef46g.m ˙=meetK
5 cdlemef46g.a A=AtomsK
6 cdlemef46g.h H=LHypK
7 cdlemef46g.u U=P˙Q˙W
8 cdlemef46g.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46g.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46g.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 cdlemef46.v V=Q˙P˙W
12 cdlemef46.n N=v˙V˙P˙Q˙v˙W
13 cdlemefs46.o O=Q˙P˙N˙u˙v˙W
14 cdlemef46.g G=aBifQP¬a˙WιcB|uA¬u˙Wu˙a˙W=ac=ifu˙Q˙PιbB|vA¬v˙W¬v˙Q˙Pb=Ou/vN˙a˙Wa
15 simp1 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKHLWHPA¬P˙WQA¬Q˙W
16 simp2l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XPQ
17 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XXB
18 vex sV
19 eqid s˙U˙Q˙P˙s˙W=s˙U˙Q˙P˙s˙W
20 8 19 cdleme31sc sVs/tD=s˙U˙Q˙P˙s˙W
21 18 20 ax-mp s/tD=s˙U˙Q˙P˙s˙W
22 eqid ιyB|tA¬t˙W¬t˙P˙Qy=E=ιyB|tA¬t˙W¬t˙P˙Qy=E
23 eqid ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
24 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W
25 1 2 3 4 5 6 7 21 8 9 22 23 24 10 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WXBFXB
26 15 17 25 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFXB
27 1 2 3 4 5 6 7 8 9 10 cdleme48bw KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=X¬FX˙W
28 26 27 jca KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFXB¬FX˙W
29 simp3l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XSA¬S˙W
30 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WFSA¬FS˙W
31 15 29 30 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFSA¬FS˙W
32 1 2 3 4 5 6 7 8 9 10 cdleme48b KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX˙W=X˙W
33 32 oveq2d KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS˙FX˙W=FS˙X˙W
34 1 2 3 4 5 6 7 8 9 10 cdleme48fv KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W
35 33 34 eqtr4d KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS˙FX˙W=FX
36 1 2 3 4 5 6 11 12 13 14 cdleme4gfv KHLWHPA¬P˙WQA¬Q˙WPQFXB¬FX˙WFSA¬FS˙WFS˙FX˙W=FXGFX=GFS˙FX˙W
37 15 16 28 31 35 36 syl122anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XGFX=GFS˙FX˙W
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46gf KHLWHPA¬P˙WQA¬Q˙WPQSA¬S˙WGFS=S
39 15 16 29 38 syl12anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XGFS=S
40 39 32 oveq12d KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XGFS˙FX˙W=S˙X˙W
41 simp3r KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XS˙X˙W=X
42 37 40 41 3eqtrd KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XGFX=X