Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef50.b |
|
2 |
|
cdlemef50.l |
|
3 |
|
cdlemef50.j |
|
4 |
|
cdlemef50.m |
|
5 |
|
cdlemef50.a |
|
6 |
|
cdlemef50.h |
|
7 |
|
cdlemef50.u |
|
8 |
|
cdlemef50.d |
|
9 |
|
cdlemefs50.e |
|
10 |
|
cdlemef50.f |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
cdleme50lebi |
|
12 |
1 2 3 4 5 6 7 8 9 10
|
cdleme50lebi |
|
13 |
12
|
ancom2s |
|
14 |
11 13
|
anbi12d |
|
15 |
|
simpl1l |
|
16 |
15
|
hllatd |
|
17 |
|
simprl |
|
18 |
|
simprr |
|
19 |
1 2
|
latasymb |
|
20 |
16 17 18 19
|
syl3anc |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
biid |
|
24 |
|
vex |
|
25 |
8 21
|
cdleme31sc |
|
26 |
24 25
|
ax-mp |
|
27 |
23 26
|
ifbieq2i |
|
28 |
|
eqid |
|
29 |
1 2 3 4 5 6 7 21 8 9 22 27 28 10
|
cdleme32fvcl |
|
30 |
29
|
adantrr |
|
31 |
|
eqid |
|
32 |
1 2 3 4 5 6 7 26 8 9 22 31 28 10
|
cdleme32fvcl |
|
33 |
32
|
adantrl |
|
34 |
1 2
|
latasymb |
|
35 |
16 30 33 34
|
syl3anc |
|
36 |
14 20 35
|
3bitr3rd |
|