Metamath Proof Explorer


Theorem cdleme50eq

Description: Part of proof of Lemma D in Crawley p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b B=BaseK
cdlemef50.l ˙=K
cdlemef50.j ˙=joinK
cdlemef50.m ˙=meetK
cdlemef50.a A=AtomsK
cdlemef50.h H=LHypK
cdlemef50.u U=P˙Q˙W
cdlemef50.d D=t˙U˙Q˙P˙t˙W
cdlemefs50.e E=P˙Q˙D˙s˙t˙W
cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme50eq KHLWHPA¬P˙WQA¬Q˙WXBYBFX=FYX=Y

Proof

Step Hyp Ref Expression
1 cdlemef50.b B=BaseK
2 cdlemef50.l ˙=K
3 cdlemef50.j ˙=joinK
4 cdlemef50.m ˙=meetK
5 cdlemef50.a A=AtomsK
6 cdlemef50.h H=LHypK
7 cdlemef50.u U=P˙Q˙W
8 cdlemef50.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs50.e E=P˙Q˙D˙s˙t˙W
10 cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 1 2 3 4 5 6 7 8 9 10 cdleme50lebi KHLWHPA¬P˙WQA¬Q˙WXBYBX˙YFX˙FY
12 1 2 3 4 5 6 7 8 9 10 cdleme50lebi KHLWHPA¬P˙WQA¬Q˙WYBXBY˙XFY˙FX
13 12 ancom2s KHLWHPA¬P˙WQA¬Q˙WXBYBY˙XFY˙FX
14 11 13 anbi12d KHLWHPA¬P˙WQA¬Q˙WXBYBX˙YY˙XFX˙FYFY˙FX
15 simpl1l KHLWHPA¬P˙WQA¬Q˙WXBYBKHL
16 15 hllatd KHLWHPA¬P˙WQA¬Q˙WXBYBKLat
17 simprl KHLWHPA¬P˙WQA¬Q˙WXBYBXB
18 simprr KHLWHPA¬P˙WQA¬Q˙WXBYBYB
19 1 2 latasymb KLatXBYBX˙YY˙XX=Y
20 16 17 18 19 syl3anc KHLWHPA¬P˙WQA¬Q˙WXBYBX˙YY˙XX=Y
21 eqid s˙U˙Q˙P˙s˙W=s˙U˙Q˙P˙s˙W
22 eqid ιyB|tA¬t˙W¬t˙P˙Qy=E=ιyB|tA¬t˙W¬t˙P˙Qy=E
23 biid s˙P˙Qs˙P˙Q
24 vex sV
25 8 21 cdleme31sc sVs/tD=s˙U˙Q˙P˙s˙W
26 24 25 ax-mp s/tD=s˙U˙Q˙P˙s˙W
27 23 26 ifbieq2i ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es˙U˙Q˙P˙s˙W
28 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W
29 1 2 3 4 5 6 7 21 8 9 22 27 28 10 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WXBFXB
30 29 adantrr KHLWHPA¬P˙WQA¬Q˙WXBYBFXB
31 eqid ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
32 1 2 3 4 5 6 7 26 8 9 22 31 28 10 cdleme32fvcl KHLWHPA¬P˙WQA¬Q˙WYBFYB
33 32 adantrl KHLWHPA¬P˙WQA¬Q˙WXBYBFYB
34 1 2 latasymb KLatFXBFYBFX˙FYFY˙FXFX=FY
35 16 30 33 34 syl3anc KHLWHPA¬P˙WQA¬Q˙WXBYBFX˙FYFY˙FXFX=FY
36 14 20 35 3bitr3rd KHLWHPA¬P˙WQA¬Q˙WXBYBFX=FYX=Y