Metamath Proof Explorer


Theorem cdleme50trn3

Description: Part of proof that F is a translation. P = Q case. TODO: fix comment. (Contributed by NM, 10-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b B=BaseK
cdlemef50.l ˙=K
cdlemef50.j ˙=joinK
cdlemef50.m ˙=meetK
cdlemef50.a A=AtomsK
cdlemef50.h H=LHypK
cdlemef50.u U=P˙Q˙W
cdlemef50.d D=t˙U˙Q˙P˙t˙W
cdlemefs50.e E=P˙Q˙D˙s˙t˙W
cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme50trn3 KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙FR˙W=U

Proof

Step Hyp Ref Expression
1 cdlemef50.b B=BaseK
2 cdlemef50.l ˙=K
3 cdlemef50.j ˙=joinK
4 cdlemef50.m ˙=meetK
5 cdlemef50.a A=AtomsK
6 cdlemef50.h H=LHypK
7 cdlemef50.u U=P˙Q˙W
8 cdlemef50.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs50.e E=P˙Q˙D˙s˙t˙W
10 cdlemef50.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 simpl1 KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WKHLWH
12 simprr KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WRA¬R˙W
13 eqid 0.K=0.K
14 2 4 13 5 6 lhpmat KHLWHRA¬R˙WR˙W=0.K
15 11 12 14 syl2anc KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙W=0.K
16 simprrl KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WRA
17 1 5 atbase RARB
18 16 17 syl KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WRB
19 simprl KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WP=Q
20 10 cdleme31id RBP=QFR=R
21 18 19 20 syl2anc KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WFR=R
22 21 oveq2d KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙FR=R˙R
23 simpl1l KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WKHL
24 3 5 hlatjidm KHLRAR˙R=R
25 23 16 24 syl2anc KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙R=R
26 22 25 eqtrd KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙FR=R
27 26 oveq1d KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙FR˙W=R˙W
28 simpl2 KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WPA¬P˙W
29 2 4 13 5 6 lhpmat KHLWHPA¬P˙WP˙W=0.K
30 11 28 29 syl2anc KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WP˙W=0.K
31 15 27 30 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙FR˙W=P˙W
32 simpl2l KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WPA
33 3 5 hlatjidm KHLPAP˙P=P
34 23 32 33 syl2anc KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WP˙P=P
35 19 oveq2d KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WP˙P=P˙Q
36 34 35 eqtr3d KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WP=P˙Q
37 36 oveq1d KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WP˙W=P˙Q˙W
38 31 37 eqtrd KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙FR˙W=P˙Q˙W
39 38 7 eqtr4di KHLWHPA¬P˙WQA¬Q˙WP=QRA¬R˙WR˙FR˙W=U