| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemef50.b |  | 
						
							| 2 |  | cdlemef50.l |  | 
						
							| 3 |  | cdlemef50.j |  | 
						
							| 4 |  | cdlemef50.m |  | 
						
							| 5 |  | cdlemef50.a |  | 
						
							| 6 |  | cdlemef50.h |  | 
						
							| 7 |  | cdlemef50.u |  | 
						
							| 8 |  | cdlemef50.d |  | 
						
							| 9 |  | cdlemefs50.e |  | 
						
							| 10 |  | cdlemef50.f |  | 
						
							| 11 |  | simpl1 |  | 
						
							| 12 |  | simprr |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 2 4 13 5 6 | lhpmat |  | 
						
							| 15 | 11 12 14 | syl2anc |  | 
						
							| 16 |  | simprrl |  | 
						
							| 17 | 1 5 | atbase |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | simprl |  | 
						
							| 20 | 10 | cdleme31id |  | 
						
							| 21 | 18 19 20 | syl2anc |  | 
						
							| 22 | 21 | oveq2d |  | 
						
							| 23 |  | simpl1l |  | 
						
							| 24 | 3 5 | hlatjidm |  | 
						
							| 25 | 23 16 24 | syl2anc |  | 
						
							| 26 | 22 25 | eqtrd |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 |  | simpl2 |  | 
						
							| 29 | 2 4 13 5 6 | lhpmat |  | 
						
							| 30 | 11 28 29 | syl2anc |  | 
						
							| 31 | 15 27 30 | 3eqtr4d |  | 
						
							| 32 |  | simpl2l |  | 
						
							| 33 | 3 5 | hlatjidm |  | 
						
							| 34 | 23 32 33 | syl2anc |  | 
						
							| 35 | 19 | oveq2d |  | 
						
							| 36 | 34 35 | eqtr3d |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 31 37 | eqtrd |  | 
						
							| 39 | 38 7 | eqtr4di |  |