| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme4.l |
|
| 2 |
|
cdleme4.j |
|
| 3 |
|
cdleme4.m |
|
| 4 |
|
cdleme4.a |
|
| 5 |
|
cdleme4.h |
|
| 6 |
|
cdleme4.u |
|
| 7 |
|
cdleme4.f |
|
| 8 |
|
cdleme4.g |
|
| 9 |
|
simp11l |
|
| 10 |
|
simp12l |
|
| 11 |
|
simp13l |
|
| 12 |
|
eqid |
|
| 13 |
12 2 4
|
hlatjcl |
|
| 14 |
9 10 11 13
|
syl3anc |
|
| 15 |
|
simp11 |
|
| 16 |
|
simp12 |
|
| 17 |
|
simp13 |
|
| 18 |
|
simp2r |
|
| 19 |
|
simp31 |
|
| 20 |
|
simp33 |
|
| 21 |
1 2 3 4 5 6 7
|
cdleme3fa |
|
| 22 |
15 16 17 18 19 20 21
|
syl132anc |
|
| 23 |
|
simp2l |
|
| 24 |
|
simp2rl |
|
| 25 |
|
simp32 |
|
| 26 |
|
eqid |
|
| 27 |
1 2 3 4 5 6 7 8 26
|
cdleme7b |
|
| 28 |
15 23 24 20 25 27
|
syl113anc |
|
| 29 |
12 2 4
|
hlatjcl |
|
| 30 |
9 22 28 29
|
syl3anc |
|
| 31 |
9
|
hllatd |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
2 4 32 33
|
linepmap |
|
| 35 |
31 10 11 19 34
|
syl31anc |
|
| 36 |
|
simp2ll |
|
| 37 |
12 2 4
|
hlatjcl |
|
| 38 |
9 36 24 37
|
syl3anc |
|
| 39 |
|
simp11r |
|
| 40 |
12 5
|
lhpbase |
|
| 41 |
39 40
|
syl |
|
| 42 |
12 1 3
|
latmle2 |
|
| 43 |
31 38 41 42
|
syl3anc |
|
| 44 |
1 2 3 4 5 6 7
|
cdleme3 |
|
| 45 |
15 16 17 18 19 20 44
|
syl132anc |
|
| 46 |
|
nbrne2 |
|
| 47 |
46
|
necomd |
|
| 48 |
43 45 47
|
syl2anc |
|
| 49 |
2 4 32 33
|
linepmap |
|
| 50 |
31 22 28 48 49
|
syl31anc |
|
| 51 |
12 4
|
atbase |
|
| 52 |
22 51
|
syl |
|
| 53 |
12 3
|
latmcl |
|
| 54 |
31 38 41 53
|
syl3anc |
|
| 55 |
12 1 2
|
latlej2 |
|
| 56 |
31 52 54 55
|
syl3anc |
|
| 57 |
1 2 3 4 5 6 7 8 26
|
cdleme7c |
|
| 58 |
15 16 11 23 18 19 25 20 57
|
syl323anc |
|
| 59 |
58
|
necomd |
|
| 60 |
|
hlatl |
|
| 61 |
9 60
|
syl |
|
| 62 |
1 2 3 4 5 6
|
lhpat2 |
|
| 63 |
15 16 11 19 62
|
syl112anc |
|
| 64 |
1 4
|
atncmp |
|
| 65 |
61 28 63 64
|
syl3anc |
|
| 66 |
59 65
|
mpbird |
|
| 67 |
12 1 3
|
latlem12 |
|
| 68 |
31 54 14 41 67
|
syl13anc |
|
| 69 |
68
|
biimpd |
|
| 70 |
43 69
|
mpan2d |
|
| 71 |
6
|
breq2i |
|
| 72 |
70 71
|
imbitrrdi |
|
| 73 |
66 72
|
mtod |
|
| 74 |
|
nbrne1 |
|
| 75 |
74
|
necomd |
|
| 76 |
56 73 75
|
syl2anc |
|
| 77 |
1 2 3 4 5 6 7 8 26
|
cdleme7e |
|
| 78 |
8 77
|
eqnetrrid |
|
| 79 |
|
eqid |
|
| 80 |
12 3 79 4 32 33
|
2lnat |
|
| 81 |
9 14 30 35 50 76 78 80
|
syl322anc |
|
| 82 |
8 81
|
eqeltrid |
|