Metamath Proof Explorer


Theorem cdlemg14f

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
Assertion cdlemg14f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P K HL W H
9 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P G T
10 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P A ¬ P ˙ W
11 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P Q A ¬ Q ˙ W
12 1 2 3 4 5 6 ltrnu K HL W H G T P A ¬ P ˙ W Q A ¬ Q ˙ W P ˙ G P ˙ W = Q ˙ G Q ˙ W
13 8 9 10 11 12 syl211anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ G P ˙ W = Q ˙ G Q ˙ W
14 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P F T
15 1 4 5 6 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
16 8 9 10 15 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P G P A ¬ G P ˙ W
17 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P F P = P
18 1 4 5 6 ltrnateq K HL W H F T P A ¬ P ˙ W G P A ¬ G P ˙ W F P = P F G P = G P
19 8 14 10 16 17 18 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P F G P = G P
20 19 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ F G P = P ˙ G P
21 20 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ F G P ˙ W = P ˙ G P ˙ W
22 1 4 5 6 ltrnel K HL W H G T Q A ¬ Q ˙ W G Q A ¬ G Q ˙ W
23 8 9 11 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P G Q A ¬ G Q ˙ W
24 1 4 5 6 ltrnateq K HL W H F T P A ¬ P ˙ W G Q A ¬ G Q ˙ W F P = P F G Q = G Q
25 8 14 10 23 17 24 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P F G Q = G Q
26 25 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P Q ˙ F G Q = Q ˙ G Q
27 26 oveq1d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P Q ˙ F G Q ˙ W = Q ˙ G Q ˙ W
28 13 21 27 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W