| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | simp32 |  | 
						
							| 10 |  | simp2l |  | 
						
							| 11 |  | simp2r |  | 
						
							| 12 | 1 2 3 4 5 6 | ltrnu |  | 
						
							| 13 | 8 9 10 11 12 | syl211anc |  | 
						
							| 14 |  | simp31 |  | 
						
							| 15 | 1 4 5 6 | ltrnel |  | 
						
							| 16 | 8 9 10 15 | syl3anc |  | 
						
							| 17 |  | simp33 |  | 
						
							| 18 | 1 4 5 6 | ltrnateq |  | 
						
							| 19 | 8 14 10 16 17 18 | syl131anc |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 | 1 4 5 6 | ltrnel |  | 
						
							| 23 | 8 9 11 22 | syl3anc |  | 
						
							| 24 | 1 4 5 6 | ltrnateq |  | 
						
							| 25 | 8 14 10 23 17 24 | syl131anc |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 | 26 | oveq1d |  | 
						
							| 28 | 13 21 27 | 3eqtr4d |  |