Metamath Proof Explorer


Theorem cdlemg14f

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg14f KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PP˙FGP˙W=Q˙FGQ˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PKHLWH
9 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PGT
10 simp2l KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PPA¬P˙W
11 simp2r KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PQA¬Q˙W
12 1 2 3 4 5 6 ltrnu KHLWHGTPA¬P˙WQA¬Q˙WP˙GP˙W=Q˙GQ˙W
13 8 9 10 11 12 syl211anc KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PP˙GP˙W=Q˙GQ˙W
14 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PFT
15 1 4 5 6 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
16 8 9 10 15 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PGPA¬GP˙W
17 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PFP=P
18 1 4 5 6 ltrnateq KHLWHFTPA¬P˙WGPA¬GP˙WFP=PFGP=GP
19 8 14 10 16 17 18 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PFGP=GP
20 19 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PP˙FGP=P˙GP
21 20 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PP˙FGP˙W=P˙GP˙W
22 1 4 5 6 ltrnel KHLWHGTQA¬Q˙WGQA¬GQ˙W
23 8 9 11 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PGQA¬GQ˙W
24 1 4 5 6 ltrnateq KHLWHFTPA¬P˙WGQA¬GQ˙WFP=PFGQ=GQ
25 8 14 10 23 17 24 syl131anc KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PFGQ=GQ
26 25 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PQ˙FGQ=Q˙GQ
27 26 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PQ˙FGQ˙W=Q˙GQ˙W
28 13 21 27 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTFP=PP˙FGP˙W=Q˙FGQ˙W