Metamath Proof Explorer


Theorem cdlemg31b0N

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
Assertion cdlemg31b0N KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPNAN=0.K

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 simp11 KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPKHL
10 simp2ll KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPPA
11 simp31l KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPvA
12 simp2rl KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPQA
13 simp12 KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPWH
14 9 13 jca KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPKHLWH
15 simp2l KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPPA¬P˙W
16 simp13 KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPFT
17 simp33 KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPFPP
18 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
19 14 15 16 17 18 syl112anc KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPRFA
20 simp2r KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPQA¬Q˙W
21 1 5 6 7 trlle KHLWHFTRF˙W
22 14 16 21 syl2anc KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPRF˙W
23 19 22 jca KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPRFARF˙W
24 simp31 KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPvAv˙W
25 simp32 KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPvRF
26 25 necomd KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPRFv
27 1 2 4 5 lhp2atne KHLWHQA¬Q˙WPARFARF˙WvAv˙WRFvQ˙RFP˙v
28 14 20 10 23 24 26 27 syl321anc KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPQ˙RFP˙v
29 28 necomd KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPP˙vQ˙RF
30 eqid 0.K=0.K
31 2 3 30 4 2atmat0 KHLPAvAQARFAP˙vQ˙RFP˙v˙Q˙RFAP˙v˙Q˙RF=0.K
32 9 10 11 12 19 29 31 syl33anc KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPP˙v˙Q˙RFAP˙v˙Q˙RF=0.K
33 8 eleq1i NAP˙v˙Q˙RFA
34 8 eqeq1i N=0.KP˙v˙Q˙RF=0.K
35 33 34 orbi12i NAN=0.KP˙v˙Q˙RFAP˙v˙Q˙RF=0.K
36 32 35 sylibr KHLWHFTPA¬P˙WQA¬Q˙WvAv˙WvRFFPPNAN=0.K