| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg12.l |
|
| 2 |
|
cdlemg12.j |
|
| 3 |
|
cdlemg12.m |
|
| 4 |
|
cdlemg12.a |
|
| 5 |
|
cdlemg12.h |
|
| 6 |
|
cdlemg12.t |
|
| 7 |
|
cdlemg12b.r |
|
| 8 |
|
cdlemg31.n |
|
| 9 |
|
simp11 |
|
| 10 |
|
simp2ll |
|
| 11 |
|
simp31l |
|
| 12 |
|
simp2rl |
|
| 13 |
|
simp12 |
|
| 14 |
9 13
|
jca |
|
| 15 |
|
simp2l |
|
| 16 |
|
simp13 |
|
| 17 |
|
simp33 |
|
| 18 |
1 4 5 6 7
|
trlat |
|
| 19 |
14 15 16 17 18
|
syl112anc |
|
| 20 |
|
simp2r |
|
| 21 |
1 5 6 7
|
trlle |
|
| 22 |
14 16 21
|
syl2anc |
|
| 23 |
19 22
|
jca |
|
| 24 |
|
simp31 |
|
| 25 |
|
simp32 |
|
| 26 |
25
|
necomd |
|
| 27 |
1 2 4 5
|
lhp2atne |
|
| 28 |
14 20 10 23 24 26 27
|
syl321anc |
|
| 29 |
28
|
necomd |
|
| 30 |
|
eqid |
|
| 31 |
2 3 30 4
|
2atmat0 |
|
| 32 |
9 10 11 12 19 29 31
|
syl33anc |
|
| 33 |
8
|
eleq1i |
|
| 34 |
8
|
eqeq1i |
|
| 35 |
33 34
|
orbi12i |
|
| 36 |
32 35
|
sylibr |
|