Metamath Proof Explorer


Theorem cdlemg43

Description: Part of proof of Lemma G of Crawley p. 116, third line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013)

Ref Expression
Hypotheses cdlemg42.l ˙=K
cdlemg42.j ˙=joinK
cdlemg42.a A=AtomsK
cdlemg42.h H=LHypK
cdlemg42.t T=LTrnKW
cdlemg42.r R=trLKW
cdlemg42.m ˙=meetK
Assertion cdlemg43 KHLWHFTGTPA¬P˙WGPPRFRGFGP=GP˙RF˙FP˙RG

Proof

Step Hyp Ref Expression
1 cdlemg42.l ˙=K
2 cdlemg42.j ˙=joinK
3 cdlemg42.a A=AtomsK
4 cdlemg42.h H=LHypK
5 cdlemg42.t T=LTrnKW
6 cdlemg42.r R=trLKW
7 cdlemg42.m ˙=meetK
8 simp1 KHLWHFTGTPA¬P˙WGPPRFRGKHLWH
9 simp2l KHLWHFTGTPA¬P˙WGPPRFRGFT
10 simp31 KHLWHFTGTPA¬P˙WGPPRFRGPA¬P˙W
11 simp2r KHLWHFTGTPA¬P˙WGPPRFRGGT
12 1 3 4 5 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
13 8 11 10 12 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGGPA¬GP˙W
14 1 2 3 4 5 6 cdlemg42 KHLWHFTGTPA¬P˙WGPPRFRG¬GP˙P˙FP
15 1 2 7 3 4 5 6 cdlemc KHLWHFTPA¬P˙WGPA¬GP˙W¬GP˙P˙FPFGP=GP˙RF˙FP˙P˙GP˙W
16 8 9 10 13 14 15 syl131anc KHLWHFTGTPA¬P˙WGPPRFRGFGP=GP˙RF˙FP˙P˙GP˙W
17 1 2 7 3 4 5 6 trlval2 KHLWHGTPA¬P˙WRG=P˙GP˙W
18 8 11 10 17 syl3anc KHLWHFTGTPA¬P˙WGPPRFRGRG=P˙GP˙W
19 18 oveq2d KHLWHFTGTPA¬P˙WGPPRFRGFP˙RG=FP˙P˙GP˙W
20 19 oveq2d KHLWHFTGTPA¬P˙WGPPRFRGGP˙RF˙FP˙RG=GP˙RF˙FP˙P˙GP˙W
21 16 20 eqtr4d KHLWHFTGTPA¬P˙WGPPRFRGFGP=GP˙RF˙FP˙RG