Metamath Proof Explorer


Theorem cdlemk11tc

Description: Part of proof of Lemma K of Crawley p. 118. Lemma for Eq. 5, p. 119. G , I stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk11tc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gXP˙I/gXP˙RIG-1

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 1 2 3 4 5 6 7 8 9 10 cdlemk11tb KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gY˙I/gY˙RIG-1
13 simp31 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbT
14 simp32 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbIBRbRFRbRG
15 13 14 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbTbIBRbRFRbRG
16 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gXP=G/gY
17 15 16 syld3an3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gXP=G/gY
18 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIKHLWH
19 simp12 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIFTFIB
20 simp331 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIIT
21 simp332 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIIIB
22 20 21 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIITIIB
23 simp2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRINTPA¬P˙WRF=RN
24 simp321 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbIB
25 simp322 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRbRF
26 simp333 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRbRI
27 24 25 26 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbIBRbRFRbRI
28 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 KHLWHFTFIBITIIBNTPA¬P˙WRF=RNbTbIBRbRFRbRII/gXP=I/gY
29 18 19 22 23 13 27 28 syl312anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRII/gXP=I/gY
30 29 oveq1d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRII/gXP˙RIG-1=I/gY˙RIG-1
31 12 17 30 3brtr4d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gXP˙I/gXP˙RIG-1