Metamath Proof Explorer


Theorem cdlemk11tc

Description: Part of proof of Lemma K of Crawley p. 118. Lemma for Eq. 5, p. 119. G , I stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk11tc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g X P ˙ I / g X P ˙ R I G -1

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 1 2 3 4 5 6 7 8 9 10 cdlemk11tb K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g Y ˙ I / g Y ˙ R I G -1
13 simp31 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b T
14 simp32 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b I B R b R F R b R G
15 13 14 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b T b I B R b R F R b R G
16 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G / g X P = G / g Y
17 15 16 syld3an3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g X P = G / g Y
18 simp11 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I K HL W H
19 simp12 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I F T F I B
20 simp331 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I T
21 simp332 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I I B
22 20 21 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I T I I B
23 simp2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I N T P A ¬ P ˙ W R F = R N
24 simp321 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b I B
25 simp322 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R b R F
26 simp333 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R b R I
27 24 25 26 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b I B R b R F R b R I
28 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 K HL W H F T F I B I T I I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R I I / g X P = I / g Y
29 18 19 22 23 13 27 28 syl312anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I / g X P = I / g Y
30 29 oveq1d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I / g X P ˙ R I G -1 = I / g Y ˙ R I G -1
31 12 17 30 3brtr4d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g X P ˙ I / g X P ˙ R I G -1