Metamath Proof Explorer


Theorem cdlemk17

Description: Part of proof of Lemma K of Crawley p. 118. Line 21 on p. 119. O , D are k_1, f_1. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemk17 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F N P = P ˙ R F ˙ O P ˙ R F D -1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 1 2 3 4 5 6 7 8 9 10 cdlemk15 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F N P ˙ P ˙ R F ˙ O P ˙ R F D -1
12 simp11l K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K HL
13 hlatl K HL K AtLat
14 12 13 syl K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K AtLat
15 simp11 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K HL W H
16 simp21 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F N T
17 simp22l K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P A
18 2 5 6 7 ltrnat K HL W H N T P A N P A
19 15 16 17 18 syl3anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F N P A
20 1 2 3 4 5 6 7 8 9 10 cdlemk16 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ R F ˙ O P ˙ R F D -1 A ¬ P ˙ R F ˙ O P ˙ R F D -1 ˙ W
21 20 simpld K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ R F ˙ O P ˙ R F D -1 A
22 2 5 atcmp K AtLat N P A P ˙ R F ˙ O P ˙ R F D -1 A N P ˙ P ˙ R F ˙ O P ˙ R F D -1 N P = P ˙ R F ˙ O P ˙ R F D -1
23 14 19 21 22 syl3anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F N P ˙ P ˙ R F ˙ O P ˙ R F D -1 N P = P ˙ R F ˙ O P ˙ R F D -1
24 11 23 mpbid K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F N P = P ˙ R F ˙ O P ˙ R F D -1