Metamath Proof Explorer


Theorem cdlemk17

Description: Part of proof of Lemma K of Crawley p. 118. Line 21 on p. 119. O , D are k_1, f_1. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B=BaseK
cdlemk1.l ˙=K
cdlemk1.j ˙=joinK
cdlemk1.m ˙=meetK
cdlemk1.a A=AtomsK
cdlemk1.h H=LHypK
cdlemk1.t T=LTrnKW
cdlemk1.r R=trLKW
cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk1.o O=SD
Assertion cdlemk17 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP=P˙RF˙OP˙RFD-1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B=BaseK
2 cdlemk1.l ˙=K
3 cdlemk1.j ˙=joinK
4 cdlemk1.m ˙=meetK
5 cdlemk1.a A=AtomsK
6 cdlemk1.h H=LHypK
7 cdlemk1.t T=LTrnKW
8 cdlemk1.r R=trLKW
9 cdlemk1.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk1.o O=SD
11 1 2 3 4 5 6 7 8 9 10 cdlemk15 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP˙P˙RF˙OP˙RFD-1
12 simp11l KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFKHL
13 hlatl KHLKAtLat
14 12 13 syl KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFKAtLat
15 simp11 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFKHLWH
16 simp21 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNT
17 simp22l KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFPA
18 2 5 6 7 ltrnat KHLWHNTPANPA
19 15 16 17 18 syl3anc KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNPA
20 1 2 3 4 5 6 7 8 9 10 cdlemk16 KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFP˙RF˙OP˙RFD-1A¬P˙RF˙OP˙RFD-1˙W
21 20 simpld KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFP˙RF˙OP˙RFD-1A
22 2 5 atcmp KAtLatNPAP˙RF˙OP˙RFD-1ANP˙P˙RF˙OP˙RFD-1NP=P˙RF˙OP˙RFD-1
23 14 19 21 22 syl3anc KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP˙P˙RF˙OP˙RFD-1NP=P˙RF˙OP˙RFD-1
24 11 23 mpbid KHLWHFTDTNTPA¬P˙WRF=RNFIBDIBRDRFNP=P˙RF˙OP˙RFD-1