Metamath Proof Explorer


Theorem cdlemk19x

Description: cdlemk19 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk19x KHLWHRF=RNFTFIBNTPA¬P˙WF/gXP=NP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp1l KHLWHRF=RNFTFIBNTPA¬P˙WKHLWH
13 1 6 7 8 cdlemftr1 KHLWHbTbIBRbRF
14 12 13 syl KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRF
15 nfv bKHLWHRF=RNFTFIBNTPA¬P˙W
16 nfcv _bF
17 nfra1 bbTbIBRbRFRbRgzP=Y
18 nfcv _bT
19 17 18 nfriota _bιzT|bTbIBRbRFRbRgzP=Y
20 11 19 nfcxfr _bX
21 16 20 nfcsbw _bF/gX
22 nfcv _bP
23 21 22 nffv _bF/gXP
24 23 nfeq1 bF/gXP=NP
25 simpl1 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFKHLWHRF=RN
26 simpl2 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFFTFIBNT
27 simpl3 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFPA¬P˙W
28 simpr KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFbTbIBRbRF
29 1 2 3 4 5 6 7 8 9 10 11 cdlemk19xlem KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gXP=NP
30 25 26 27 28 29 syl121anc KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gXP=NP
31 30 exp32 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gXP=NP
32 15 24 31 rexlimd KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gXP=NP
33 14 32 mpd KHLWHRF=RNFTFIBNTPA¬P˙WF/gXP=NP