Metamath Proof Explorer


Theorem cdlemk46

Description: Part of proof of Lemma K of Crawley p. 118. Line 38 (last line), p. 119. G , I stand for g, h. X represents tau. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk46 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGI/gXP˙G/gXP˙RI

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBKHLWH
13 simp31 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIT
14 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGT
15 6 7 ltrncom KHLWHITGTIG=GI
16 12 13 14 15 syl3anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIG=GI
17 16 csbeq1d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIG/gX=GI/gX
18 17 fveq1d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIG/gXP=GI/gXP
19 simp12 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBFTFIB
20 simp32 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIIB
21 13 20 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBITIIB
22 simp2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBNTPA¬P˙WRF=RN
23 simp13r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGIB
24 simp33 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGIIB
25 16 24 eqnetrd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIGIB
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk45 KHLWHFTFIBITIIBNTPA¬P˙WRF=RNGTGIBIGIBIG/gXP˙G/gXP˙RI
27 12 19 21 22 14 23 25 26 syl313anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBIG/gXP˙G/gXP˙RI
28 18 27 eqbrtrrd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNITIIBGIIBGI/gXP˙G/gXP˙RI