Metamath Proof Explorer


Theorem cdlemk46

Description: Part of proof of Lemma K of Crawley p. 118. Line 38 (last line), p. 119. G , I stand for g, h. X represents tau. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk46 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B G I / g X P ˙ G / g X P ˙ R I

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp11 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B K HL W H
13 simp31 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I T
14 simp13l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B G T
15 6 7 ltrncom K HL W H I T G T I G = G I
16 12 13 14 15 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I G = G I
17 16 csbeq1d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I G / g X = G I / g X
18 17 fveq1d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I G / g X P = G I / g X P
19 simp12 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B F T F I B
20 simp32 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I I B
21 13 20 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I T I I B
22 simp2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B N T P A ¬ P ˙ W R F = R N
23 simp13r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B G I B
24 simp33 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B G I I B
25 16 24 eqnetrd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I G I B
26 1 2 3 4 5 6 7 8 9 10 11 cdlemk45 K HL W H F T F I B I T I I B N T P A ¬ P ˙ W R F = R N G T G I B I G I B I G / g X P ˙ G / g X P ˙ R I
27 12 19 21 22 14 23 25 26 syl313anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B I G / g X P ˙ G / g X P ˙ R I
28 18 27 eqbrtrrd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N I T I I B G I I B G I / g X P ˙ G / g X P ˙ R I