| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|
| 2 |
|
cdlemk5.l |
|
| 3 |
|
cdlemk5.j |
|
| 4 |
|
cdlemk5.m |
|
| 5 |
|
cdlemk5.a |
|
| 6 |
|
cdlemk5.h |
|
| 7 |
|
cdlemk5.t |
|
| 8 |
|
cdlemk5.r |
|
| 9 |
|
cdlemk5.z |
|
| 10 |
|
cdlemk5.y |
|
| 11 |
|
cdlemk5.x |
|
| 12 |
|
simp11l |
|
| 13 |
|
simp11 |
|
| 14 |
|
simp12 |
|
| 15 |
|
simp13 |
|
| 16 |
|
simp21 |
|
| 17 |
|
simp22 |
|
| 18 |
|
simp23 |
|
| 19 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
| 20 |
13 14 15 16 17 18 19
|
syl132anc |
|
| 21 |
2 5 6 7
|
ltrnel |
|
| 22 |
13 20 17 21
|
syl3anc |
|
| 23 |
22
|
simpld |
|
| 24 |
|
simp31 |
|
| 25 |
|
simp32 |
|
| 26 |
1 5 6 7 8
|
trlnidat |
|
| 27 |
13 24 25 26
|
syl3anc |
|
| 28 |
24 25
|
jca |
|
| 29 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
| 30 |
13 14 28 16 17 18 29
|
syl132anc |
|
| 31 |
|
simp22l |
|
| 32 |
2 5 6 7
|
ltrnat |
|
| 33 |
13 30 31 32
|
syl3anc |
|
| 34 |
|
simp13l |
|
| 35 |
|
simp13r |
|
| 36 |
1 5 6 7 8
|
trlnidat |
|
| 37 |
13 34 35 36
|
syl3anc |
|
| 38 |
6 7
|
ltrnco |
|
| 39 |
13 34 24 38
|
syl3anc |
|
| 40 |
34 24
|
jca |
|
| 41 |
|
simp33 |
|
| 42 |
1 6 7 8
|
trlconid |
|
| 43 |
13 40 41 42
|
syl3anc |
|
| 44 |
39 43
|
jca |
|
| 45 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|
| 46 |
13 14 44 16 17 18 45
|
syl132anc |
|
| 47 |
2 5 6 7
|
ltrnat |
|
| 48 |
13 46 31 47
|
syl3anc |
|
| 49 |
24 25 43
|
3jca |
|
| 50 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk46 |
|
| 51 |
49 50
|
syld3an3 |
|
| 52 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk45 |
|
| 53 |
49 52
|
syld3an3 |
|
| 54 |
2 6 7 8
|
trlle |
|
| 55 |
13 24 54
|
syl2anc |
|
| 56 |
27 55
|
jca |
|
| 57 |
2 6 7 8
|
trlle |
|
| 58 |
13 34 57
|
syl2anc |
|
| 59 |
37 58
|
jca |
|
| 60 |
41
|
necomd |
|
| 61 |
2 3 5 6
|
lhp2atne |
|
| 62 |
13 22 33 56 59 60 61
|
syl321anc |
|
| 63 |
2 3 4 5
|
2atm |
|
| 64 |
12 23 27 33 37 48 51 53 62 63
|
syl333anc |
|