Metamath Proof Explorer


Theorem cdlemk6u

Description: Part of proof of Lemma K of Crawley p. 118. Apply dalaw . (Contributed by NM, 4-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemk6u K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ G P ˙ O P ˙ R G D -1 ˙ G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 1 2 3 4 5 6 7 8 9 10 cdlemk5u K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ G P ˙ R G D -1 ˙ X P ˙ R X D -1
12 simp11l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D K HL
13 simp22l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P A
14 simp11 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D K HL W H
15 simp212 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D G T
16 2 5 6 7 ltrnat K HL W H G T P A G P A
17 14 15 13 16 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D G P A
18 simp213 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D X T
19 2 5 6 7 ltrnat K HL W H X T P A X P A
20 14 18 13 19 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D X P A
21 simp1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D K HL W H F T D T
22 simp211 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D N T
23 simp22 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P A ¬ P ˙ W
24 simp23 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R F = R N
25 simp3l1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D F I B
26 simp3l2 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D I B
27 simp3r1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R D R F
28 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W
29 28 simpld K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A
30 21 22 23 24 25 26 27 29 syl133anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D O P A
31 simp13 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D T
32 simp3r2 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R G R D
33 5 6 7 8 trlcocnvat K HL W H G T D T R G R D R G D -1 A
34 14 15 31 32 33 syl121anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R G D -1 A
35 simp3r3 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R X R D
36 5 6 7 8 trlcocnvat K HL W H X T D T R X R D R X D -1 A
37 14 18 31 35 36 syl121anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R X D -1 A
38 2 3 4 5 dalaw K HL P A G P A X P A O P A R G D -1 A R X D -1 A P ˙ O P ˙ G P ˙ R G D -1 ˙ X P ˙ R X D -1 P ˙ G P ˙ O P ˙ R G D -1 ˙ G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P
39 12 13 17 20 30 34 37 38 syl133anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ G P ˙ R G D -1 ˙ X P ˙ R X D -1 P ˙ G P ˙ O P ˙ R G D -1 ˙ G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P
40 11 39 mpd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ G P ˙ O P ˙ R G D -1 ˙ G P ˙ X P ˙ R G D -1 ˙ R X D -1 ˙ X P ˙ P ˙ R X D -1 ˙ O P