Description: Part of proof of Lemma K of Crawley p. 118. Apply dalaw . (Contributed by NM, 4-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk1.b | |
|
cdlemk1.l | |
||
cdlemk1.j | |
||
cdlemk1.m | |
||
cdlemk1.a | |
||
cdlemk1.h | |
||
cdlemk1.t | |
||
cdlemk1.r | |
||
cdlemk1.s | |
||
cdlemk1.o | |
||
Assertion | cdlemk6u | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk1.b | |
|
2 | cdlemk1.l | |
|
3 | cdlemk1.j | |
|
4 | cdlemk1.m | |
|
5 | cdlemk1.a | |
|
6 | cdlemk1.h | |
|
7 | cdlemk1.t | |
|
8 | cdlemk1.r | |
|
9 | cdlemk1.s | |
|
10 | cdlemk1.o | |
|
11 | 1 2 3 4 5 6 7 8 9 10 | cdlemk5u | |
12 | simp11l | |
|
13 | simp22l | |
|
14 | simp11 | |
|
15 | simp212 | |
|
16 | 2 5 6 7 | ltrnat | |
17 | 14 15 13 16 | syl3anc | |
18 | simp213 | |
|
19 | 2 5 6 7 | ltrnat | |
20 | 14 18 13 19 | syl3anc | |
21 | simp1 | |
|
22 | simp211 | |
|
23 | simp22 | |
|
24 | simp23 | |
|
25 | simp3l1 | |
|
26 | simp3l2 | |
|
27 | simp3r1 | |
|
28 | 1 2 3 4 5 6 7 8 9 10 | cdlemkoatnle | |
29 | 28 | simpld | |
30 | 21 22 23 24 25 26 27 29 | syl133anc | |
31 | simp13 | |
|
32 | simp3r2 | |
|
33 | 5 6 7 8 | trlcocnvat | |
34 | 14 15 31 32 33 | syl121anc | |
35 | simp3r3 | |
|
36 | 5 6 7 8 | trlcocnvat | |
37 | 14 18 31 35 36 | syl121anc | |
38 | 2 3 4 5 | dalaw | |
39 | 12 13 17 20 30 34 37 38 | syl133anc | |
40 | 11 39 | mpd | |