Metamath Proof Explorer


Theorem cdlemkid

Description: The value of the tau function (in Lemma K of Crawley p. 118) on the identity relation. (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemkid KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=IB

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 7 fvexi TV
13 nfv bKHLWHFTNTRF=RNPA¬P˙WG=IB
14 nfcv _bG
15 nfra1 bbTbIBRbRFRbRgzP=Y
16 nfcv _bT
17 15 16 nfriota _bιzT|bTbIBRbRFRbRgzP=Y
18 11 17 nfcxfr _bX
19 14 18 nfcsbw _bG/gX
20 19 nfeq1 bG/gX=IB
21 20 a1i KHLWHFTNTRF=RNPA¬P˙WG=IBbG/gX=IB
22 1 2 3 4 5 6 7 8 9 10 11 cdlemkid4 KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=ιzT|bTbIBRbRFRbRGz=IB
23 eqeq1 IB=G/gXIB=IBG/gX=IB
24 23 adantl KHLWHFTNTRF=RNPA¬P˙WG=IBIB=G/gXIB=IBG/gX=IB
25 eqidd bTbIBRbRFRbRGIB=IB
26 25 a1i KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRGIB=IB
27 1 2 3 4 5 6 7 8 9 10 11 cdlemkid5 KHLWHFTNTRF=RNPA¬P˙WG=IBG/gXT
28 1 6 7 8 cdlemftr2 KHLWHbTbIBRbRFRbRG
29 28 3ad2ant1 KHLWHFTNTRF=RNPA¬P˙WG=IBbTbIBRbRFRbRG
30 13 21 22 24 26 27 29 riotasv3d KHLWHFTNTRF=RNPA¬P˙WG=IBTVG/gX=IB
31 12 30 mpan2 KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=IB