Metamath Proof Explorer


Theorem cdlemkid

Description: The value of the tau function (in Lemma K of Crawley p. 118) on the identity relation. (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemkid K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B G / g X = I B

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 7 fvexi T V
13 nfv b K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B
14 nfcv _ b G
15 nfra1 b b T b I B R b R F R b R g z P = Y
16 nfcv _ b T
17 15 16 nfriota _ b ι z T | b T b I B R b R F R b R g z P = Y
18 11 17 nfcxfr _ b X
19 14 18 nfcsbw _ b G / g X
20 19 nfeq1 b G / g X = I B
21 20 a1i K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B b G / g X = I B
22 1 2 3 4 5 6 7 8 9 10 11 cdlemkid4 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B G / g X = ι z T | b T b I B R b R F R b R G z = I B
23 eqeq1 I B = G / g X I B = I B G / g X = I B
24 23 adantl K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B I B = G / g X I B = I B G / g X = I B
25 eqidd b T b I B R b R F R b R G I B = I B
26 25 a1i K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B b T b I B R b R F R b R G I B = I B
27 1 2 3 4 5 6 7 8 9 10 11 cdlemkid5 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B G / g X T
28 1 6 7 8 cdlemftr2 K HL W H b T b I B R b R F R b R G
29 28 3ad2ant1 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B b T b I B R b R F R b R G
30 13 21 22 24 26 27 29 riotasv3d K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B T V G / g X = I B
31 12 30 mpan2 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B G / g X = I B