Metamath Proof Explorer


Theorem ceile

Description: The ceiling of a real number is the smallest integer greater than or equal to it. (Contributed by Jeff Hankins, 10-Jun-2007)

Ref Expression
Assertion ceile ABABAB

Proof

Step Hyp Ref Expression
1 ceim1l A-A-1<A
2 1 adantr AB-A-1<A
3 ceicl AA
4 zre AA
5 peano2rem A-A-1
6 3 4 5 3syl A-A-1
7 6 adantr AB-A-1
8 simpl ABA
9 zre BB
10 9 adantl ABB
11 ltletr -A-1AB-A-1<AAB-A-1<B
12 7 8 10 11 syl3anc AB-A-1<AAB-A-1<B
13 2 12 mpand ABAB-A-1<B
14 zlem1lt ABAB-A-1<B
15 3 14 sylan ABAB-A-1<B
16 13 15 sylibrd ABABAB
17 16 3impia ABABAB