Metamath Proof Explorer


Theorem cfsmo

Description: The map in cff1 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cfsmo AOnff:cfAASmofzAwcfAzfw

Proof

Step Hyp Ref Expression
1 dmeq x=zdomx=domz
2 1 fveq2d x=zhdomx=hdomz
3 fveq2 n=mxn=xm
4 suceq xn=xmsucxn=sucxm
5 3 4 syl n=msucxn=sucxm
6 5 cbviunv ndomxsucxn=mdomxsucxm
7 fveq1 x=zxm=zm
8 suceq xm=zmsucxm=suczm
9 7 8 syl x=zsucxm=suczm
10 1 9 iuneq12d x=zmdomxsucxm=mdomzsuczm
11 6 10 eqtrid x=zndomxsucxn=mdomzsuczm
12 2 11 uneq12d x=zhdomxndomxsucxn=hdomzmdomzsuczm
13 12 cbvmptv xVhdomxndomxsucxn=zVhdomzmdomzsuczm
14 eqid recsxVhdomxndomxsucxncfA=recsxVhdomxndomxsucxncfA
15 13 14 cfsmolem AOnff:cfAASmofzAwcfAzfw