Metamath Proof Explorer


Theorem cfsmolem

Description: Lemma for cfsmo . (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Hypotheses cfsmolem.2 F=zVgdomztdomzsuczt
cfsmolem.3 G=recsFcfA
Assertion cfsmolem AOnff:cfAASmofzAwcfAzfw

Proof

Step Hyp Ref Expression
1 cfsmolem.2 F=zVgdomztdomzsuczt
2 cfsmolem.3 G=recsFcfA
3 cff1 AOngg:cfA1-1AzAwcfAzgw
4 cfon cfAOn
5 4 oneli xcfAxOn
6 5 3ad2ant3 g:cfA1-1AAOnxcfAxOn
7 eleq1w x=yxcfAycfA
8 7 3anbi3d x=yg:cfA1-1AAOnxcfAg:cfA1-1AAOnycfA
9 fveq2 x=yGx=Gy
10 9 eleq1d x=yGxAGyA
11 8 10 imbi12d x=yg:cfA1-1AAOnxcfAGxAg:cfA1-1AAOnycfAGyA
12 simpl1 g:cfA1-1AAOnxcfAyxg:cfA1-1A
13 simpl2 g:cfA1-1AAOnxcfAyxAOn
14 ontr1 cfAOnyxxcfAycfA
15 4 14 ax-mp yxxcfAycfA
16 15 ancoms xcfAyxycfA
17 16 3ad2antl3 g:cfA1-1AAOnxcfAyxycfA
18 pm2.27 g:cfA1-1AAOnycfAg:cfA1-1AAOnycfAGyAGyA
19 12 13 17 18 syl3anc g:cfA1-1AAOnxcfAyxg:cfA1-1AAOnycfAGyAGyA
20 19 ralimdva g:cfA1-1AAOnxcfAyxg:cfA1-1AAOnycfAGyAyxGyA
21 2 fveq1i Gx=recsFcfAx
22 fvres xcfArecsFcfAx=recsFx
23 21 22 eqtrid xcfAGx=recsFx
24 recsval xOnrecsFx=FrecsFx
25 recsfnon recsFFnOn
26 fnfun recsFFnOnFunrecsF
27 25 26 ax-mp FunrecsF
28 vex xV
29 resfunexg FunrecsFxVrecsFxV
30 27 28 29 mp2an recsFxV
31 dmeq z=recsFxdomz=domrecsFx
32 31 fveq2d z=recsFxgdomz=gdomrecsFx
33 fveq1 z=recsFxzt=recsFxt
34 suceq zt=recsFxtsuczt=sucrecsFxt
35 33 34 syl z=recsFxsuczt=sucrecsFxt
36 31 35 iuneq12d z=recsFxtdomzsuczt=tdomrecsFxsucrecsFxt
37 32 36 uneq12d z=recsFxgdomztdomzsuczt=gdomrecsFxtdomrecsFxsucrecsFxt
38 fvex gdomrecsFxV
39 30 dmex domrecsFxV
40 fvex recsFxtV
41 40 sucex sucrecsFxtV
42 39 41 iunex tdomrecsFxsucrecsFxtV
43 38 42 unex gdomrecsFxtdomrecsFxsucrecsFxtV
44 37 1 43 fvmpt recsFxVFrecsFx=gdomrecsFxtdomrecsFxsucrecsFxt
45 30 44 ax-mp FrecsFx=gdomrecsFxtdomrecsFxsucrecsFxt
46 24 45 eqtrdi xOnrecsFx=gdomrecsFxtdomrecsFxsucrecsFxt
47 onss xOnxOn
48 fnssres recsFFnOnxOnrecsFxFnx
49 25 47 48 sylancr xOnrecsFxFnx
50 fndm recsFxFnxdomrecsFx=x
51 fveq2 domrecsFx=xgdomrecsFx=gx
52 iuneq1 domrecsFx=xtdomrecsFxsucrecsFxt=txsucrecsFxt
53 fvres txrecsFxt=recsFt
54 suceq recsFxt=recsFtsucrecsFxt=sucrecsFt
55 53 54 syl txsucrecsFxt=sucrecsFt
56 55 iuneq2i txsucrecsFxt=txsucrecsFt
57 fveq2 y=trecsFy=recsFt
58 suceq recsFy=recsFtsucrecsFy=sucrecsFt
59 57 58 syl y=tsucrecsFy=sucrecsFt
60 59 cbviunv yxsucrecsFy=txsucrecsFt
61 56 60 eqtr4i txsucrecsFxt=yxsucrecsFy
62 52 61 eqtrdi domrecsFx=xtdomrecsFxsucrecsFxt=yxsucrecsFy
63 51 62 uneq12d domrecsFx=xgdomrecsFxtdomrecsFxsucrecsFxt=gxyxsucrecsFy
64 49 50 63 3syl xOngdomrecsFxtdomrecsFxsucrecsFxt=gxyxsucrecsFy
65 46 64 eqtrd xOnrecsFx=gxyxsucrecsFy
66 5 65 syl xcfArecsFx=gxyxsucrecsFy
67 23 66 eqtrd xcfAGx=gxyxsucrecsFy
68 67 3ad2ant2 g:cfA1-1AAOnxcfAyxGyAGx=gxyxsucrecsFy
69 eloni AOnOrdA
70 69 adantl g:cfA1-1AAOnOrdA
71 70 3ad2ant1 g:cfA1-1AAOnxcfAyxGyAOrdA
72 f1f g:cfA1-1Ag:cfAA
73 72 ffvelcdmda g:cfA1-1AxcfAgxA
74 73 adantlr g:cfA1-1AAOnxcfAgxA
75 74 3adant3 g:cfA1-1AAOnxcfAyxGyAgxA
76 2 fveq1i Gy=recsFcfAy
77 15 fvresd yxxcfArecsFcfAy=recsFy
78 76 77 eqtrid yxxcfAGy=recsFy
79 78 adantrl yxAOnxcfAGy=recsFy
80 79 ancoms AOnxcfAyxGy=recsFy
81 80 eleq1d AOnxcfAyxGyArecsFyA
82 ordsucss OrdArecsFyAsucrecsFyA
83 69 82 syl AOnrecsFyAsucrecsFyA
84 83 ad2antrr AOnxcfAyxrecsFyAsucrecsFyA
85 81 84 sylbid AOnxcfAyxGyAsucrecsFyA
86 85 ralimdva AOnxcfAyxGyAyxsucrecsFyA
87 iunss yxsucrecsFyAyxsucrecsFyA
88 86 87 imbitrrdi AOnxcfAyxGyAyxsucrecsFyA
89 88 3impia AOnxcfAyxGyAyxsucrecsFyA
90 onelon AOnrecsFyArecsFyOn
91 90 ex AOnrecsFyArecsFyOn
92 91 ad2antrr AOnxcfAyxrecsFyArecsFyOn
93 81 92 sylbid AOnxcfAyxGyArecsFyOn
94 onsuc recsFyOnsucrecsFyOn
95 93 94 syl6 AOnxcfAyxGyAsucrecsFyOn
96 95 ralimdva AOnxcfAyxGyAyxsucrecsFyOn
97 96 3impia AOnxcfAyxGyAyxsucrecsFyOn
98 iunon xVyxsucrecsFyOnyxsucrecsFyOn
99 28 97 98 sylancr AOnxcfAyxGyAyxsucrecsFyOn
100 simp1 AOnxcfAyxGyAAOn
101 onsseleq yxsucrecsFyOnAOnyxsucrecsFyAyxsucrecsFyAyxsucrecsFy=A
102 99 100 101 syl2anc AOnxcfAyxGyAyxsucrecsFyAyxsucrecsFyAyxsucrecsFy=A
103 idd AOnxcfAyxGyAyxsucrecsFyAyxsucrecsFyA
104 simpll xcfAyxGyAyxsucrecsFy=AAOnxcfA
105 simprr xcfAyxGyAyxsucrecsFy=AAOnAOn
106 5 ad2antrr xcfAyxGyAyxsucrecsFy=AAOnxOn
107 5 49 syl xcfArecsFxFnx
108 107 adantr xcfAyxGyArecsFxFnx
109 78 ancoms xcfAyxGy=recsFy
110 fvres yxrecsFxy=recsFy
111 110 adantl xcfAyxrecsFxy=recsFy
112 109 111 eqtr4d xcfAyxGy=recsFxy
113 112 eleq1d xcfAyxGyArecsFxyA
114 113 ralbidva xcfAyxGyAyxrecsFxyA
115 114 biimpa xcfAyxGyAyxrecsFxyA
116 ffnfv recsFx:xArecsFxFnxyxrecsFxyA
117 108 115 116 sylanbrc xcfAyxGyArecsFx:xA
118 eleq2 yxsucrecsFy=AtyxsucrecsFytA
119 118 biimpar yxsucrecsFy=AtAtyxsucrecsFy
120 119 adantrl yxsucrecsFy=AAOntAtyxsucrecsFy
121 120 3adant1 recsFx:xAyxsucrecsFy=AAOntAtyxsucrecsFy
122 onelon AOntAtOn
123 110 adantl recsFx:xAyxrecsFxy=recsFy
124 ffvelcdm recsFx:xAyxrecsFxyA
125 123 124 eqeltrrd recsFx:xAyxrecsFyA
126 125 90 sylan2 AOnrecsFx:xAyxrecsFyOn
127 126 adantlr AOntArecsFx:xAyxrecsFyOn
128 onsssuc tOnrecsFyOntrecsFytsucrecsFy
129 122 127 128 syl2an2r AOntArecsFx:xAyxtrecsFytsucrecsFy
130 129 anassrs AOntArecsFx:xAyxtrecsFytsucrecsFy
131 130 rexbidva AOntArecsFx:xAyxtrecsFyyxtsucrecsFy
132 eliun tyxsucrecsFyyxtsucrecsFy
133 131 132 bitr4di AOntArecsFx:xAyxtrecsFytyxsucrecsFy
134 133 ancoms recsFx:xAAOntAyxtrecsFytyxsucrecsFy
135 134 3adant2 recsFx:xAyxsucrecsFy=AAOntAyxtrecsFytyxsucrecsFy
136 121 135 mpbird recsFx:xAyxsucrecsFy=AAOntAyxtrecsFy
137 136 3expa recsFx:xAyxsucrecsFy=AAOntAyxtrecsFy
138 137 anassrs recsFx:xAyxsucrecsFy=AAOntAyxtrecsFy
139 138 ralrimiva recsFx:xAyxsucrecsFy=AAOntAyxtrecsFy
140 139 expl recsFx:xAyxsucrecsFy=AAOntAyxtrecsFy
141 117 140 syl xcfAyxGyAyxsucrecsFy=AAOntAyxtrecsFy
142 141 imp xcfAyxGyAyxsucrecsFy=AAOntAyxtrecsFy
143 feq1 f=recsFxf:xArecsFx:xA
144 fveq1 f=recsFxfy=recsFxy
145 144 sseq2d f=recsFxtfytrecsFxy
146 145 rexbidv f=recsFxyxtfyyxtrecsFxy
147 110 sseq2d yxtrecsFxytrecsFy
148 147 rexbiia yxtrecsFxyyxtrecsFy
149 146 148 bitrdi f=recsFxyxtfyyxtrecsFy
150 149 ralbidv f=recsFxtAyxtfytAyxtrecsFy
151 143 150 anbi12d f=recsFxf:xAtAyxtfyrecsFx:xAtAyxtrecsFy
152 30 151 spcev recsFx:xAtAyxtrecsFyff:xAtAyxtfy
153 117 142 152 syl2an2r xcfAyxGyAyxsucrecsFy=AAOnff:xAtAyxtfy
154 cfflb AOnxOnff:xAtAyxtfycfAx
155 154 imp AOnxOnff:xAtAyxtfycfAx
156 105 106 153 155 syl21anc xcfAyxGyAyxsucrecsFy=AAOncfAx
157 ontri1 cfAOnxOncfAx¬xcfA
158 4 5 157 sylancr xcfAcfAx¬xcfA
159 158 ad2antrr xcfAyxGyAyxsucrecsFy=AAOncfAx¬xcfA
160 156 159 mpbid xcfAyxGyAyxsucrecsFy=AAOn¬xcfA
161 104 160 pm2.21dd xcfAyxGyAyxsucrecsFy=AAOnyxsucrecsFyA
162 161 ex xcfAyxGyAyxsucrecsFy=AAOnyxsucrecsFyA
163 162 expcomd xcfAyxGyAAOnyxsucrecsFy=AyxsucrecsFyA
164 163 com12 AOnxcfAyxGyAyxsucrecsFy=AyxsucrecsFyA
165 164 3impib AOnxcfAyxGyAyxsucrecsFy=AyxsucrecsFyA
166 103 165 jaod AOnxcfAyxGyAyxsucrecsFyAyxsucrecsFy=AyxsucrecsFyA
167 102 166 sylbid AOnxcfAyxGyAyxsucrecsFyAyxsucrecsFyA
168 89 167 mpd AOnxcfAyxGyAyxsucrecsFyA
169 168 3adant1l g:cfA1-1AAOnxcfAyxGyAyxsucrecsFyA
170 ordunel OrdAgxAyxsucrecsFyAgxyxsucrecsFyA
171 71 75 169 170 syl3anc g:cfA1-1AAOnxcfAyxGyAgxyxsucrecsFyA
172 68 171 eqeltrd g:cfA1-1AAOnxcfAyxGyAGxA
173 172 3expia g:cfA1-1AAOnxcfAyxGyAGxA
174 173 3impa g:cfA1-1AAOnxcfAyxGyAGxA
175 20 174 syldc yxg:cfA1-1AAOnycfAGyAg:cfA1-1AAOnxcfAGxA
176 175 a1i xOnyxg:cfA1-1AAOnycfAGyAg:cfA1-1AAOnxcfAGxA
177 11 176 tfis2 xOng:cfA1-1AAOnxcfAGxA
178 6 177 mpcom g:cfA1-1AAOnxcfAGxA
179 178 3expia g:cfA1-1AAOnxcfAGxA
180 179 ralrimiv g:cfA1-1AAOnxcfAGxA
181 4 onssi cfAOn
182 fnssres recsFFnOncfAOnrecsFcfAFncfA
183 2 fneq1i GFncfArecsFcfAFncfA
184 182 183 sylibr recsFFnOncfAOnGFncfA
185 25 181 184 mp2an GFncfA
186 ffnfv G:cfAAGFncfAxcfAGxA
187 185 186 mpbiran G:cfAAxcfAGxA
188 180 187 sylibr g:cfA1-1AAOnG:cfAA
189 188 adantlr g:cfA1-1AzAwcfAzgwAOnG:cfAA
190 onss AOnAOn
191 190 adantl g:cfA1-1AAOnAOn
192 4 onordi OrdcfA
193 fvex recsFyV
194 193 sucid recsFysucrecsFy
195 fveq2 t=yrecsFt=recsFy
196 suceq recsFt=recsFysucrecsFt=sucrecsFy
197 195 196 syl t=ysucrecsFt=sucrecsFy
198 197 eliuni yxrecsFysucrecsFyrecsFytxsucrecsFt
199 198 60 eleqtrrdi yxrecsFysucrecsFyrecsFyyxsucrecsFy
200 194 199 mpan2 yxrecsFyyxsucrecsFy
201 elun2 recsFyyxsucrecsFyrecsFygxyxsucrecsFy
202 200 201 syl yxrecsFygxyxsucrecsFy
203 202 adantr yxxcfArecsFygxyxsucrecsFy
204 5 adantl yxxcfAxOn
205 204 65 syl yxxcfArecsFx=gxyxsucrecsFy
206 203 205 eleqtrrd yxxcfArecsFyrecsFx
207 23 adantl yxxcfAGx=recsFx
208 206 78 207 3eltr4d yxxcfAGyGx
209 208 expcom xcfAyxGyGx
210 209 ralrimiv xcfAyxGyGx
211 210 rgen xcfAyxGyGx
212 issmo2 G:cfAAAOnOrdcfAxcfAyxGyGxSmoG
213 212 com12 AOnOrdcfAxcfAyxGyGxG:cfAASmoG
214 192 211 213 mp3an23 AOnG:cfAASmoG
215 191 188 214 sylc g:cfA1-1AAOnSmoG
216 215 adantlr g:cfA1-1AzAwcfAzgwAOnSmoG
217 fveq2 x=wgx=gw
218 fveq2 x=wGx=Gw
219 217 218 sseq12d x=wgxGxgwGw
220 ssun1 gxgxyxsucrecsFy
221 220 67 sseqtrrid xcfAgxGx
222 219 221 vtoclga wcfAgwGw
223 sstr zgwgwGwzGw
224 223 expcom gwGwzgwzGw
225 222 224 syl wcfAzgwzGw
226 225 reximia wcfAzgwwcfAzGw
227 226 ralimi zAwcfAzgwzAwcfAzGw
228 227 ad2antlr g:cfA1-1AzAwcfAzgwAOnzAwcfAzGw
229 fnex GFncfAcfAOnGV
230 185 4 229 mp2an GV
231 feq1 f=Gf:cfAAG:cfAA
232 smoeq f=GSmofSmoG
233 fveq1 f=Gfw=Gw
234 233 sseq2d f=GzfwzGw
235 234 rexbidv f=GwcfAzfwwcfAzGw
236 235 ralbidv f=GzAwcfAzfwzAwcfAzGw
237 231 232 236 3anbi123d f=Gf:cfAASmofzAwcfAzfwG:cfAASmoGzAwcfAzGw
238 230 237 spcev G:cfAASmoGzAwcfAzGwff:cfAASmofzAwcfAzfw
239 189 216 228 238 syl3anc g:cfA1-1AzAwcfAzgwAOnff:cfAASmofzAwcfAzfw
240 239 expcom AOng:cfA1-1AzAwcfAzgwff:cfAASmofzAwcfAzfw
241 240 exlimdv AOngg:cfA1-1AzAwcfAzgwff:cfAASmofzAwcfAzfw
242 3 241 mpd AOnff:cfAASmofzAwcfAzfw