Metamath Proof Explorer


Theorem cgrdegen

Description: Two congruent segments are either both degenerate or both nondegenerate. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrdegen NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDA=BC=D

Proof

Step Hyp Ref Expression
1 opeq1 A=BAB=BB
2 1 breq1d A=BABCgrCDBBCgrCD
3 2 biimpac ABCgrCDA=BBBCgrCD
4 simp1 NA𝔼NB𝔼NC𝔼ND𝔼NN
5 simp2r NA𝔼NB𝔼NC𝔼ND𝔼NB𝔼N
6 simp3l NA𝔼NB𝔼NC𝔼ND𝔼NC𝔼N
7 simp3r NA𝔼NB𝔼NC𝔼ND𝔼ND𝔼N
8 cgrid2 NB𝔼NC𝔼ND𝔼NBBCgrCDC=D
9 4 5 6 7 8 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NBBCgrCDC=D
10 3 9 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDA=BC=D
11 10 expdimp NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDA=BC=D
12 opeq1 C=DCD=DD
13 12 breq2d C=DABCgrCDABCgrDD
14 13 biimpac ABCgrCDC=DABCgrDD
15 simp2l NA𝔼NB𝔼NC𝔼ND𝔼NA𝔼N
16 axcgrid NA𝔼NB𝔼ND𝔼NABCgrDDA=B
17 4 15 5 7 16 syl13anc NA𝔼NB𝔼NC𝔼ND𝔼NABCgrDDA=B
18 14 17 syl5 NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDC=DA=B
19 18 expdimp NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDC=DA=B
20 11 19 impbid NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDA=BC=D
21 20 ex NA𝔼NB𝔼NC𝔼ND𝔼NABCgrCDA=BC=D