Metamath Proof Explorer


Theorem clim2f

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A , with more general quantifier restrictions than clim . Similar to clim2 , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses nf _kF
clim2f.z Z=M
clim2f.m φM
clim2f.f φFV
clim2f.b φkZFk=B
Assertion clim2f φFAAx+jZkjBBA<x

Proof

Step Hyp Ref Expression
1 nf _kF
2 clim2f.z Z=M
3 clim2f.m φM
4 clim2f.f φFV
5 clim2f.b φkZFk=B
6 eqidd φkFk=Fk
7 1 4 6 climf φFAAx+jkjFkFkA<x
8 2 uztrn2 jZkjkZ
9 5 eleq1d φkZFkB
10 5 fvoveq1d φkZFkA=BA
11 10 breq1d φkZFkA<xBA<x
12 9 11 anbi12d φkZFkFkA<xBBA<x
13 8 12 sylan2 φjZkjFkFkA<xBBA<x
14 13 anassrs φjZkjFkFkA<xBBA<x
15 14 ralbidva φjZkjFkFkA<xkjBBA<x
16 15 rexbidva φjZkjFkFkA<xjZkjBBA<x
17 2 rexuz3 MjZkjFkFkA<xjkjFkFkA<x
18 3 17 syl φjZkjFkFkA<xjkjFkFkA<x
19 16 18 bitr3d φjZkjBBA<xjkjFkFkA<x
20 19 ralbidv φx+jZkjBBA<xx+jkjFkFkA<x
21 20 anbi2d φAx+jZkjBBA<xAx+jkjFkFkA<x
22 7 21 bitr4d φFAAx+jZkjBBA<x