Metamath Proof Explorer


Theorem clim2f2

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A , with more general quantifier restrictions than clim . Similar to clim2 , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses clim2f2.p kφ
clim2f2.k _kF
clim2f2.z Z=M
clim2f2.m φM
clim2f2.f φFV
clim2f2.b φkZFk=B
Assertion clim2f2 φFAAx+jZkjBBA<x

Proof

Step Hyp Ref Expression
1 clim2f2.p kφ
2 clim2f2.k _kF
3 clim2f2.z Z=M
4 clim2f2.m φM
5 clim2f2.f φFV
6 clim2f2.b φkZFk=B
7 eqidd φkFk=Fk
8 1 2 5 7 climf2 φFAAx+jkjFkFkA<x
9 nfv kjZ
10 1 9 nfan kφjZ
11 3 uztrn2 jZkjkZ
12 6 eleq1d φkZFkB
13 6 fvoveq1d φkZFkA=BA
14 13 breq1d φkZFkA<xBA<x
15 12 14 anbi12d φkZFkFkA<xBBA<x
16 11 15 sylan2 φjZkjFkFkA<xBBA<x
17 16 anassrs φjZkjFkFkA<xBBA<x
18 10 17 ralbida φjZkjFkFkA<xkjBBA<x
19 18 rexbidva φjZkjFkFkA<xjZkjBBA<x
20 3 rexuz3 MjZkjFkFkA<xjkjFkFkA<x
21 4 20 syl φjZkjFkFkA<xjkjFkFkA<x
22 19 21 bitr3d φjZkjBBA<xjkjFkFkA<x
23 22 ralbidv φx+jZkjBBA<xx+jkjFkFkA<x
24 23 anbi2d φAx+jZkjBBA<xAx+jkjFkFkA<x
25 8 24 bitr4d φFAAx+jZkjBBA<x