Metamath Proof Explorer


Theorem clim2ser2

Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
clim2ser.2 φNZ
clim2ser.4 φkZFk
clim2ser2.5 φseqN+1+FA
Assertion clim2ser2 φseqM+FA+seqM+FN

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 clim2ser.2 φNZ
3 clim2ser.4 φkZFk
4 clim2ser2.5 φseqN+1+FA
5 eqid N+1=N+1
6 2 1 eleqtrdi φNM
7 peano2uz NMN+1M
8 6 7 syl φN+1M
9 eluzelz N+1MN+1
10 8 9 syl φN+1
11 eluzel2 NMM
12 6 11 syl φM
13 1 12 3 serf φseqM+F:Z
14 13 2 ffvelcdmd φseqM+FN
15 seqex seqM+FV
16 15 a1i φseqM+FV
17 8 1 eleqtrrdi φN+1Z
18 1 uztrn2 N+1ZkN+1kZ
19 17 18 sylan φkN+1kZ
20 19 3 syldan φkN+1Fk
21 5 10 20 serf φseqN+1+F:N+1
22 21 ffvelcdmda φjN+1seqN+1+Fj
23 14 adantr φjN+1seqM+FN
24 addcl kxk+x
25 24 adantl φjN+1kxk+x
26 addass kxyk+x+y=k+x+y
27 26 adantl φjN+1kxyk+x+y=k+x+y
28 simpr φjN+1jN+1
29 6 adantr φjN+1NM
30 elfzuz kMjkM
31 30 1 eleqtrrdi kMjkZ
32 31 3 sylan2 φkMjFk
33 32 adantlr φjN+1kMjFk
34 25 27 28 29 33 seqsplit φjN+1seqM+Fj=seqM+FN+seqN+1+Fj
35 23 22 34 comraddd φjN+1seqM+Fj=seqN+1+Fj+seqM+FN
36 5 10 4 14 16 22 35 climaddc1 φseqM+FA+seqM+FN