Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clim2ser.1 | |
|
clim2ser.2 | |
||
clim2ser.4 | |
||
clim2ser2.5 | |
||
Assertion | clim2ser2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | |
|
2 | clim2ser.2 | |
|
3 | clim2ser.4 | |
|
4 | clim2ser2.5 | |
|
5 | eqid | |
|
6 | 2 1 | eleqtrdi | |
7 | peano2uz | |
|
8 | 6 7 | syl | |
9 | eluzelz | |
|
10 | 8 9 | syl | |
11 | eluzel2 | |
|
12 | 6 11 | syl | |
13 | 1 12 3 | serf | |
14 | 13 2 | ffvelcdmd | |
15 | seqex | |
|
16 | 15 | a1i | |
17 | 8 1 | eleqtrrdi | |
18 | 1 | uztrn2 | |
19 | 17 18 | sylan | |
20 | 19 3 | syldan | |
21 | 5 10 20 | serf | |
22 | 21 | ffvelcdmda | |
23 | 14 | adantr | |
24 | addcl | |
|
25 | 24 | adantl | |
26 | addass | |
|
27 | 26 | adantl | |
28 | simpr | |
|
29 | 6 | adantr | |
30 | elfzuz | |
|
31 | 30 1 | eleqtrrdi | |
32 | 31 3 | sylan2 | |
33 | 32 | adantlr | |
34 | 25 27 28 29 33 | seqsplit | |
35 | 23 22 34 | comraddd | |
36 | 5 10 4 14 16 22 35 | climaddc1 | |