Metamath Proof Explorer


Theorem clim2ser2

Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
clim2ser.2 φ N Z
clim2ser.4 φ k Z F k
clim2ser2.5 φ seq N + 1 + F A
Assertion clim2ser2 φ seq M + F A + seq M + F N

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 clim2ser.2 φ N Z
3 clim2ser.4 φ k Z F k
4 clim2ser2.5 φ seq N + 1 + F A
5 eqid N + 1 = N + 1
6 2 1 eleqtrdi φ N M
7 peano2uz N M N + 1 M
8 6 7 syl φ N + 1 M
9 eluzelz N + 1 M N + 1
10 8 9 syl φ N + 1
11 eluzel2 N M M
12 6 11 syl φ M
13 1 12 3 serf φ seq M + F : Z
14 13 2 ffvelrnd φ seq M + F N
15 seqex seq M + F V
16 15 a1i φ seq M + F V
17 8 1 eleqtrrdi φ N + 1 Z
18 1 uztrn2 N + 1 Z k N + 1 k Z
19 17 18 sylan φ k N + 1 k Z
20 19 3 syldan φ k N + 1 F k
21 5 10 20 serf φ seq N + 1 + F : N + 1
22 21 ffvelrnda φ j N + 1 seq N + 1 + F j
23 14 adantr φ j N + 1 seq M + F N
24 addcl k x k + x
25 24 adantl φ j N + 1 k x k + x
26 addass k x y k + x + y = k + x + y
27 26 adantl φ j N + 1 k x y k + x + y = k + x + y
28 simpr φ j N + 1 j N + 1
29 6 adantr φ j N + 1 N M
30 elfzuz k M j k M
31 30 1 eleqtrrdi k M j k Z
32 31 3 sylan2 φ k M j F k
33 32 adantlr φ j N + 1 k M j F k
34 25 27 28 29 33 seqsplit φ j N + 1 seq M + F j = seq M + F N + seq N + 1 + F j
35 23 22 34 comraddd φ j N + 1 seq M + F j = seq N + 1 + F j + seq M + F N
36 5 10 4 14 16 22 35 climaddc1 φ seq M + F A + seq M + F N