Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climeldmeqmpt.k | |
|
climeldmeqmpt.m | |
||
climeldmeqmpt.z | |
||
climeldmeqmpt.a | |
||
climeldmeqmpt.i | |
||
climeldmeqmpt.b | |
||
climeldmeqmpt.t | |
||
climeldmeqmpt.l | |
||
climeldmeqmpt.c | |
||
climeldmeqmpt.e | |
||
Assertion | climeldmeqmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climeldmeqmpt.k | |
|
2 | climeldmeqmpt.m | |
|
3 | climeldmeqmpt.z | |
|
4 | climeldmeqmpt.a | |
|
5 | climeldmeqmpt.i | |
|
6 | climeldmeqmpt.b | |
|
7 | climeldmeqmpt.t | |
|
8 | climeldmeqmpt.l | |
|
9 | climeldmeqmpt.c | |
|
10 | climeldmeqmpt.e | |
|
11 | 4 | mptexd | |
12 | 7 | mptexd | |
13 | nfv | |
|
14 | 1 13 | nfan | |
15 | nfcsb1v | |
|
16 | nfcv | |
|
17 | 16 | nfcsb1 | |
18 | 15 17 | nfeq | |
19 | 14 18 | nfim | |
20 | eleq1w | |
|
21 | 20 | anbi2d | |
22 | csbeq1a | |
|
23 | csbeq1a | |
|
24 | 22 23 | eqeq12d | |
25 | 21 24 | imbi12d | |
26 | 19 25 10 | chvarfv | |
27 | 5 | sselda | |
28 | nfv | |
|
29 | 1 28 | nfan | |
30 | nfcv | |
|
31 | 15 30 | nfel | |
32 | 29 31 | nfim | |
33 | eleq1w | |
|
34 | 33 | anbi2d | |
35 | 22 | eleq1d | |
36 | 34 35 | imbi12d | |
37 | 32 36 6 | chvarfv | |
38 | 27 37 | syldan | |
39 | 16 | nfcsb1 | |
40 | eqid | |
|
41 | 16 39 22 40 | fvmptf | |
42 | 27 38 41 | syl2anc | |
43 | 8 | sselda | |
44 | nfv | |
|
45 | 1 44 | nfan | |
46 | nfcv | |
|
47 | 17 46 | nfel | |
48 | 45 47 | nfim | |
49 | eleq1w | |
|
50 | 49 | anbi2d | |
51 | 23 | eleq1d | |
52 | 50 51 | imbi12d | |
53 | 48 52 9 | chvarfv | |
54 | 43 53 | syldan | |
55 | eqid | |
|
56 | 16 17 23 55 | fvmptf | |
57 | 43 54 56 | syl2anc | |
58 | 26 42 57 | 3eqtr4d | |
59 | 3 11 12 2 58 | climeldmeq | |