Metamath Proof Explorer


Theorem climeldmeqmpt

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climeldmeqmpt.k kφ
climeldmeqmpt.m φM
climeldmeqmpt.z Z=M
climeldmeqmpt.a φAR
climeldmeqmpt.i φZA
climeldmeqmpt.b φkABV
climeldmeqmpt.t φCS
climeldmeqmpt.l φZC
climeldmeqmpt.c φkCDW
climeldmeqmpt.e φkZB=D
Assertion climeldmeqmpt φkABdomkCDdom

Proof

Step Hyp Ref Expression
1 climeldmeqmpt.k kφ
2 climeldmeqmpt.m φM
3 climeldmeqmpt.z Z=M
4 climeldmeqmpt.a φAR
5 climeldmeqmpt.i φZA
6 climeldmeqmpt.b φkABV
7 climeldmeqmpt.t φCS
8 climeldmeqmpt.l φZC
9 climeldmeqmpt.c φkCDW
10 climeldmeqmpt.e φkZB=D
11 4 mptexd φkABV
12 7 mptexd φkCDV
13 nfv kjZ
14 1 13 nfan kφjZ
15 nfcsb1v _kj/kB
16 nfcv _kj
17 16 nfcsb1 _kj/kD
18 15 17 nfeq kj/kB=j/kD
19 14 18 nfim kφjZj/kB=j/kD
20 eleq1w k=jkZjZ
21 20 anbi2d k=jφkZφjZ
22 csbeq1a k=jB=j/kB
23 csbeq1a k=jD=j/kD
24 22 23 eqeq12d k=jB=Dj/kB=j/kD
25 21 24 imbi12d k=jφkZB=DφjZj/kB=j/kD
26 19 25 10 chvarfv φjZj/kB=j/kD
27 5 sselda φjZjA
28 nfv kjA
29 1 28 nfan kφjA
30 nfcv _kV
31 15 30 nfel kj/kBV
32 29 31 nfim kφjAj/kBV
33 eleq1w k=jkAjA
34 33 anbi2d k=jφkAφjA
35 22 eleq1d k=jBVj/kBV
36 34 35 imbi12d k=jφkABVφjAj/kBV
37 32 36 6 chvarfv φjAj/kBV
38 27 37 syldan φjZj/kBV
39 16 nfcsb1 _kj/kB
40 eqid kAB=kAB
41 16 39 22 40 fvmptf jAj/kBVkABj=j/kB
42 27 38 41 syl2anc φjZkABj=j/kB
43 8 sselda φjZjC
44 nfv kjC
45 1 44 nfan kφjC
46 nfcv _kW
47 17 46 nfel kj/kDW
48 45 47 nfim kφjCj/kDW
49 eleq1w k=jkCjC
50 49 anbi2d k=jφkCφjC
51 23 eleq1d k=jDWj/kDW
52 50 51 imbi12d k=jφkCDWφjCj/kDW
53 48 52 9 chvarfv φjCj/kDW
54 43 53 syldan φjZj/kDW
55 eqid kCD=kCD
56 16 17 23 55 fvmptf jCj/kDWkCDj=j/kD
57 43 54 56 syl2anc φjZkCDj=j/kD
58 26 42 57 3eqtr4d φjZkABj=kCDj
59 3 11 12 2 58 climeldmeq φkABdomkCDdom