Metamath Proof Explorer


Theorem climfveq

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climfveq.1 Z = M
climfveq.2 φ F V
climfveq.3 φ G W
climfveq.4 φ M
climfveq.5 φ k Z F k = G k
Assertion climfveq φ F = G

Proof

Step Hyp Ref Expression
1 climfveq.1 Z = M
2 climfveq.2 φ F V
3 climfveq.3 φ G W
4 climfveq.4 φ M
5 climfveq.5 φ k Z F k = G k
6 climdm F dom F F
7 6 biimpi F dom F F
8 7 adantl φ F dom F F
9 8 6 sylibr φ F dom F dom
10 1 2 3 4 5 climeldmeq φ F dom G dom
11 10 adantr φ F dom F dom G dom
12 9 11 mpbid φ F dom G dom
13 climdm G dom G G
14 12 13 sylib φ F dom G G
15 3 adantr φ F dom G W
16 2 adantr φ F dom F V
17 4 adantr φ F dom M
18 5 eqcomd φ k Z G k = F k
19 18 adantlr φ F dom k Z G k = F k
20 1 15 16 17 19 climeq φ F dom G G F G
21 14 20 mpbid φ F dom F G
22 climuni F F F G F = G
23 8 21 22 syl2anc φ F dom F = G
24 ndmfv ¬ F dom F =
25 24 adantl φ ¬ F dom F =
26 simpr φ ¬ F dom ¬ F dom
27 10 adantr φ ¬ F dom F dom G dom
28 26 27 mtbid φ ¬ F dom ¬ G dom
29 ndmfv ¬ G dom G =
30 28 29 syl φ ¬ F dom G =
31 25 30 eqtr4d φ ¬ F dom F = G
32 23 31 pm2.61dan φ F = G