Metamath Proof Explorer


Theorem climliminflimsup3

Description: A sequence of real numbers converges if and only if its inferior limit is real and equal to its superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climliminflimsup3.1 φM
climliminflimsup3.2 Z=M
climliminflimsup3.3 φF:Z
Assertion climliminflimsup3 φFdomlim infFlim infF=lim supF

Proof

Step Hyp Ref Expression
1 climliminflimsup3.1 φM
2 climliminflimsup3.2 Z=M
3 climliminflimsup3.3 φF:Z
4 1 2 3 climliminflimsup φFdomlim infFlim supFlim infF
5 3 frexr φF:Z*
6 1 2 5 liminfgelimsupuz φlim supFlim infFlim infF=lim supF
7 6 anbi2d φlim infFlim supFlim infFlim infFlim infF=lim supF
8 4 7 bitrd φFdomlim infFlim infF=lim supF