Metamath Proof Explorer


Theorem clsneiel2

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021)

Ref Expression
Hypotheses clsnei.o O=iV,jVk𝒫jiljmi|lkm
clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
clsnei.d D=PB
clsnei.f F=𝒫BOB
clsnei.h H=FD
clsnei.r φKHN
clsneiel.x φXB
clsneiel.s φS𝒫B
Assertion clsneiel2 φXKBS¬SNX

Proof

Step Hyp Ref Expression
1 clsnei.o O=iV,jVk𝒫jiljmi|lkm
2 clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
3 clsnei.d D=PB
4 clsnei.f F=𝒫BOB
5 clsnei.h H=FD
6 clsnei.r φKHN
7 clsneiel.x φXB
8 clsneiel.s φS𝒫B
9 3 5 6 clsneircomplex φBS𝒫B
10 1 2 3 4 5 6 7 9 clsneiel1 φXKBS¬BBSNX
11 8 elpwid φSB
12 dfss4 SBBBS=S
13 11 12 sylib φBBS=S
14 13 eleq1d φBBSNXSNX
15 14 notbid φ¬BBSNX¬SNX
16 10 15 bitrd φXKBS¬SNX