Metamath Proof Explorer


Theorem cmdpropd

Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same colimits. (Contributed by Zhi Wang, 20-Nov-2025)

Ref Expression
Hypotheses lmdpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
lmdpropd.2 φ comp 𝑓 A = comp 𝑓 B
lmdpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
lmdpropd.4 φ comp 𝑓 C = comp 𝑓 D
lmdpropd.a φ A V
lmdpropd.b φ B V
lmdpropd.c φ C V
lmdpropd.d φ D V
Assertion cmdpropd Could not format assertion : No typesetting found for |- ( ph -> ( A Colimit C ) = ( B Colimit D ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 lmdpropd.1 φ Hom 𝑓 A = Hom 𝑓 B
2 lmdpropd.2 φ comp 𝑓 A = comp 𝑓 B
3 lmdpropd.3 φ Hom 𝑓 C = Hom 𝑓 D
4 lmdpropd.4 φ comp 𝑓 C = comp 𝑓 D
5 lmdpropd.a φ A V
6 lmdpropd.b φ B V
7 lmdpropd.c φ C V
8 lmdpropd.d φ D V
9 3 4 1 2 7 8 5 6 funcpropd φ C Func A = D Func B
10 1 adantr φ f C Func A Hom 𝑓 A = Hom 𝑓 B
11 2 adantr φ f C Func A comp 𝑓 A = comp 𝑓 B
12 3 adantr φ f C Func A Hom 𝑓 C = Hom 𝑓 D
13 4 adantr φ f C Func A comp 𝑓 C = comp 𝑓 D
14 simpr φ f C Func A f C Func A
15 14 func1st2nd φ f C Func A 1 st f C Func A 2 nd f
16 15 funcrcl2 φ f C Func A C Cat
17 9 adantr φ f C Func A C Func A = D Func B
18 14 17 eleqtrd φ f C Func A f D Func B
19 18 func1st2nd φ f C Func A 1 st f D Func B 2 nd f
20 19 funcrcl2 φ f C Func A D Cat
21 15 funcrcl3 φ f C Func A A Cat
22 19 funcrcl3 φ f C Func A B Cat
23 12 13 10 11 16 20 21 22 fucpropd φ f C Func A C FuncCat A = D FuncCat B
24 23 fveq2d φ f C Func A Hom 𝑓 C FuncCat A = Hom 𝑓 D FuncCat B
25 23 fveq2d φ f C Func A comp 𝑓 C FuncCat A = comp 𝑓 D FuncCat B
26 eqid C FuncCat A = C FuncCat A
27 26 16 21 fuccat φ f C Func A C FuncCat A Cat
28 23 27 eqeltrrd φ f C Func A D FuncCat B Cat
29 10 11 24 25 21 22 27 28 uppropd Could not format ( ( ph /\ f e. ( C Func A ) ) -> ( A UP ( C FuncCat A ) ) = ( B UP ( D FuncCat B ) ) ) : No typesetting found for |- ( ( ph /\ f e. ( C Func A ) ) -> ( A UP ( C FuncCat A ) ) = ( B UP ( D FuncCat B ) ) ) with typecode |-
30 10 11 12 13 21 22 16 20 diagpropd φ f C Func A A Δ func C = B Δ func D
31 eqidd φ f C Func A f = f
32 29 30 31 oveq123d Could not format ( ( ph /\ f e. ( C Func A ) ) -> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) = ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) : No typesetting found for |- ( ( ph /\ f e. ( C Func A ) ) -> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) = ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) with typecode |-
33 9 32 mpteq12dva Could not format ( ph -> ( f e. ( C Func A ) |-> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) ) = ( f e. ( D Func B ) |-> ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) ) : No typesetting found for |- ( ph -> ( f e. ( C Func A ) |-> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) ) = ( f e. ( D Func B ) |-> ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) ) with typecode |-
34 cmdfval Could not format ( A Colimit C ) = ( f e. ( C Func A ) |-> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) ) : No typesetting found for |- ( A Colimit C ) = ( f e. ( C Func A ) |-> ( ( A DiagFunc C ) ( A UP ( C FuncCat A ) ) f ) ) with typecode |-
35 cmdfval Could not format ( B Colimit D ) = ( f e. ( D Func B ) |-> ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) : No typesetting found for |- ( B Colimit D ) = ( f e. ( D Func B ) |-> ( ( B DiagFunc D ) ( B UP ( D FuncCat B ) ) f ) ) with typecode |-
36 33 34 35 3eqtr4g Could not format ( ph -> ( A Colimit C ) = ( B Colimit D ) ) : No typesetting found for |- ( ph -> ( A Colimit C ) = ( B Colimit D ) ) with typecode |-