Metamath Proof Explorer


Theorem cmslsschl

Description: A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022)

Ref Expression
Hypotheses cmslsschl.x X=W𝑠U
cmslsschl.s S=LSubSpW
Assertion cmslsschl WℂHilXCMetSpUSXℂHil

Proof

Step Hyp Ref Expression
1 cmslsschl.x X=W𝑠U
2 cmslsschl.s S=LSubSpW
3 hlbn WℂHilWBan
4 bnnvc WBanWNrmVec
5 3 4 syl WℂHilWNrmVec
6 5 3ad2ant1 WℂHilXCMetSpUSWNrmVec
7 eqid ScalarW=ScalarW
8 7 bnsca WBanScalarWCMetSp
9 3 8 syl WℂHilScalarWCMetSp
10 9 3ad2ant1 WℂHilXCMetSpUSScalarWCMetSp
11 3simpc WℂHilXCMetSpUSXCMetSpUS
12 1 2 cmslssbn WNrmVecScalarWCMetSpXCMetSpUSXBan
13 6 10 11 12 syl21anc WℂHilXCMetSpUSXBan
14 hlcph WℂHilWCPreHil
15 1 2 cphsscph WCPreHilUSXCPreHil
16 14 15 sylan WℂHilUSXCPreHil
17 16 3adant2 WℂHilXCMetSpUSXCPreHil
18 ishl XℂHilXBanXCPreHil
19 13 17 18 sylanbrc WℂHilXCMetSpUSXℂHil