Metamath Proof Explorer


Theorem cmt2N

Description: Commutation with orthocomplement. Theorem 2.3(i) of Beran p. 39. ( cmcm2i analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmt2.b B=BaseK
cmt2.o ˙=ocK
cmt2.c C=cmK
Assertion cmt2N KOMLXBYBXCYXC˙Y

Proof

Step Hyp Ref Expression
1 cmt2.b B=BaseK
2 cmt2.o ˙=ocK
3 cmt2.c C=cmK
4 omllat KOMLKLat
5 4 3ad2ant1 KOMLXBYBKLat
6 eqid meetK=meetK
7 1 6 latmcl KLatXBYBXmeetKYB
8 4 7 syl3an1 KOMLXBYBXmeetKYB
9 simp2 KOMLXBYBXB
10 omlop KOMLKOP
11 10 3ad2ant1 KOMLXBYBKOP
12 simp3 KOMLXBYBYB
13 1 2 opoccl KOPYB˙YB
14 11 12 13 syl2anc KOMLXBYB˙YB
15 1 6 latmcl KLatXB˙YBXmeetK˙YB
16 5 9 14 15 syl3anc KOMLXBYBXmeetK˙YB
17 eqid joinK=joinK
18 1 17 latjcom KLatXmeetKYBXmeetK˙YBXmeetKYjoinKXmeetK˙Y=XmeetK˙YjoinKXmeetKY
19 5 8 16 18 syl3anc KOMLXBYBXmeetKYjoinKXmeetK˙Y=XmeetK˙YjoinKXmeetKY
20 1 2 opococ KOPYB˙˙Y=Y
21 11 12 20 syl2anc KOMLXBYB˙˙Y=Y
22 21 oveq2d KOMLXBYBXmeetK˙˙Y=XmeetKY
23 22 oveq2d KOMLXBYBXmeetK˙YjoinKXmeetK˙˙Y=XmeetK˙YjoinKXmeetKY
24 19 23 eqtr4d KOMLXBYBXmeetKYjoinKXmeetK˙Y=XmeetK˙YjoinKXmeetK˙˙Y
25 24 eqeq2d KOMLXBYBX=XmeetKYjoinKXmeetK˙YX=XmeetK˙YjoinKXmeetK˙˙Y
26 1 17 6 2 3 cmtvalN KOMLXBYBXCYX=XmeetKYjoinKXmeetK˙Y
27 1 17 6 2 3 cmtvalN KOMLXB˙YBXC˙YX=XmeetK˙YjoinKXmeetK˙˙Y
28 14 27 syld3an3 KOMLXBYBXC˙YX=XmeetK˙YjoinKXmeetK˙˙Y
29 25 26 28 3bitr4d KOMLXBYBXCYXC˙Y