Metamath Proof Explorer


Theorem cncms

Description: The field of complex numbers is a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cncms fldCMetSp

Proof

Step Hyp Ref Expression
1 cnfldms fldMetSp
2 eqid abs=abs
3 2 cncmet absCMet
4 cnfldbas =Basefld
5 cnmet absMet
6 metf absMetabs:×
7 5 6 ax-mp abs:×
8 ffn abs:×absFn×
9 fnresdm absFn×abs×=abs
10 7 8 9 mp2b abs×=abs
11 cnfldds abs=distfld
12 11 reseq1i abs×=distfld×
13 10 12 eqtr3i abs=distfld×
14 4 13 iscms fldCMetSpfldMetSpabsCMet
15 1 3 14 mpbir2an fldCMetSp