| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  | 
						
							| 2 |  | nuleldmp |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 |  | simp2 |  | 
						
							| 5 |  | cndprobval |  | 
						
							| 6 | 1 3 4 5 | syl3anc |  | 
						
							| 7 |  | 0in |  | 
						
							| 8 | 7 | fveq2i |  | 
						
							| 9 | 8 | oveq1i |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | probnul |  | 
						
							| 12 | 1 11 | syl |  | 
						
							| 13 | 12 | oveq1d |  | 
						
							| 14 |  | prob01 |  | 
						
							| 15 | 14 | 3adant3 |  | 
						
							| 16 |  | elunitcn |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 |  | simp3 |  | 
						
							| 19 | 17 18 | div0d |  | 
						
							| 20 | 10 13 19 | 3eqtrd |  | 
						
							| 21 | 6 20 | eqtrd |  |