Description: The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnfldexp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | oveq2 | |
|
3 | 1 2 | eqeq12d | |
4 | 3 | imbi2d | |
5 | oveq1 | |
|
6 | oveq2 | |
|
7 | 5 6 | eqeq12d | |
8 | 7 | imbi2d | |
9 | oveq1 | |
|
10 | oveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | imbi2d | |
13 | oveq1 | |
|
14 | oveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 15 | imbi2d | |
17 | eqid | |
|
18 | cnfldbas | |
|
19 | 17 18 | mgpbas | |
20 | cnfld1 | |
|
21 | 17 20 | ringidval | |
22 | eqid | |
|
23 | 19 21 22 | mulg0 | |
24 | exp0 | |
|
25 | 23 24 | eqtr4d | |
26 | oveq1 | |
|
27 | cnring | |
|
28 | 17 | ringmgp | |
29 | 27 28 | ax-mp | |
30 | cnfldmul | |
|
31 | 17 30 | mgpplusg | |
32 | 19 22 31 | mulgnn0p1 | |
33 | 29 32 | mp3an1 | |
34 | 33 | ancoms | |
35 | expp1 | |
|
36 | 34 35 | eqeq12d | |
37 | 26 36 | imbitrrid | |
38 | 37 | expcom | |
39 | 38 | a2d | |
40 | 4 8 12 16 25 39 | nn0ind | |
41 | 40 | impcom | |