Metamath Proof Explorer


Theorem cnlimci

Description: If F is a continuous function, then the limit of the function at any point equals its value. (Contributed by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses cnlimci.f φF:AcnD
cnlimci.c φBA
Assertion cnlimci φFBFlimB

Proof

Step Hyp Ref Expression
1 cnlimci.f φF:AcnD
2 cnlimci.c φBA
3 fveq2 x=BFx=FB
4 oveq2 x=BFlimx=FlimB
5 3 4 eleq12d x=BFxFlimxFBFlimB
6 cncfrss F:AcnDA
7 1 6 syl φA
8 cncfrss2 F:AcnDD
9 1 8 syl φD
10 ssid
11 cncfss DAcnDAcn
12 9 10 11 sylancl φAcnDAcn
13 12 1 sseldd φF:Acn
14 cnlimc AF:AcnF:AxAFxFlimx
15 14 simplbda AF:AcnxAFxFlimx
16 7 13 15 syl2anc φxAFxFlimx
17 5 16 2 rspcdva φFBFlimB