Metamath Proof Explorer


Theorem cnlnadjeui

Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadj.1 T LinOp
cnlnadj.2 T ContOp
Assertion cnlnadjeui ∃! t LinOp ContOp x y T x ih y = x ih t y

Proof

Step Hyp Ref Expression
1 cnlnadj.1 T LinOp
2 cnlnadj.2 T ContOp
3 1 2 cnlnadji t LinOp ContOp x y T x ih y = x ih t y
4 adjmo * t t : x y x ih T y = t x ih y
5 inss1 LinOp ContOp LinOp
6 5 sseli t LinOp ContOp t LinOp
7 lnopf t LinOp t :
8 6 7 syl t LinOp ContOp t :
9 simpl t : x y T x ih y = x ih t y t :
10 eqcom T x ih y = x ih t y x ih t y = T x ih y
11 10 2ralbii x y T x ih y = x ih t y x y x ih t y = T x ih y
12 1 lnopfi T :
13 adjsym t : T : x y x ih t y = T x ih y x y x ih T y = t x ih y
14 12 13 mpan2 t : x y x ih t y = T x ih y x y x ih T y = t x ih y
15 11 14 syl5bb t : x y T x ih y = x ih t y x y x ih T y = t x ih y
16 15 biimpa t : x y T x ih y = x ih t y x y x ih T y = t x ih y
17 9 16 jca t : x y T x ih y = x ih t y t : x y x ih T y = t x ih y
18 8 17 sylan t LinOp ContOp x y T x ih y = x ih t y t : x y x ih T y = t x ih y
19 18 moimi * t t : x y x ih T y = t x ih y * t t LinOp ContOp x y T x ih y = x ih t y
20 df-rmo * t LinOp ContOp x y T x ih y = x ih t y * t t LinOp ContOp x y T x ih y = x ih t y
21 19 20 sylibr * t t : x y x ih T y = t x ih y * t LinOp ContOp x y T x ih y = x ih t y
22 4 21 ax-mp * t LinOp ContOp x y T x ih y = x ih t y
23 reu5 ∃! t LinOp ContOp x y T x ih y = x ih t y t LinOp ContOp x y T x ih y = x ih t y * t LinOp ContOp x y T x ih y = x ih t y
24 3 22 23 mpbir2an ∃! t LinOp ContOp x y T x ih y = x ih t y