Metamath Proof Explorer


Theorem cnlnadjeui

Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadj.1 TLinOp
cnlnadj.2 TContOp
Assertion cnlnadjeui ∃!tLinOpContOpxyTxihy=xihty

Proof

Step Hyp Ref Expression
1 cnlnadj.1 TLinOp
2 cnlnadj.2 TContOp
3 1 2 cnlnadji tLinOpContOpxyTxihy=xihty
4 adjmo *tt:xyxihTy=txihy
5 inss1 LinOpContOpLinOp
6 5 sseli tLinOpContOptLinOp
7 lnopf tLinOpt:
8 6 7 syl tLinOpContOpt:
9 simpl t:xyTxihy=xihtyt:
10 eqcom Txihy=xihtyxihty=Txihy
11 10 2ralbii xyTxihy=xihtyxyxihty=Txihy
12 1 lnopfi T:
13 adjsym t:T:xyxihty=TxihyxyxihTy=txihy
14 12 13 mpan2 t:xyxihty=TxihyxyxihTy=txihy
15 11 14 bitrid t:xyTxihy=xihtyxyxihTy=txihy
16 15 biimpa t:xyTxihy=xihtyxyxihTy=txihy
17 9 16 jca t:xyTxihy=xihtyt:xyxihTy=txihy
18 8 17 sylan tLinOpContOpxyTxihy=xihtyt:xyxihTy=txihy
19 18 moimi *tt:xyxihTy=txihy*ttLinOpContOpxyTxihy=xihty
20 df-rmo *tLinOpContOpxyTxihy=xihty*ttLinOpContOpxyTxihy=xihty
21 19 20 sylibr *tt:xyxihTy=txihy*tLinOpContOpxyTxihy=xihty
22 4 21 ax-mp *tLinOpContOpxyTxihy=xihty
23 reu5 ∃!tLinOpContOpxyTxihy=xihtytLinOpContOpxyTxihy=xihty*tLinOpContOpxyTxihy=xihty
24 3 22 23 mpbir2an ∃!tLinOpContOpxyTxihy=xihty