Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnlnadj.1 | |
|
cnlnadj.2 | |
||
Assertion | cnlnadjeui | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlnadj.1 | |
|
2 | cnlnadj.2 | |
|
3 | 1 2 | cnlnadji | |
4 | adjmo | |
|
5 | inss1 | |
|
6 | 5 | sseli | |
7 | lnopf | |
|
8 | 6 7 | syl | |
9 | simpl | |
|
10 | eqcom | |
|
11 | 10 | 2ralbii | |
12 | 1 | lnopfi | |
13 | adjsym | |
|
14 | 12 13 | mpan2 | |
15 | 11 14 | bitrid | |
16 | 15 | biimpa | |
17 | 9 16 | jca | |
18 | 8 17 | sylan | |
19 | 18 | moimi | |
20 | df-rmo | |
|
21 | 19 20 | sylibr | |
22 | 4 21 | ax-mp | |
23 | reu5 | |
|
24 | 3 22 23 | mpbir2an | |