Metamath Proof Explorer


Theorem cnmpt2ds

Description: Continuity of the metric function; analogue of cnmpt22f which cannot be used directly because D is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses cnmpt1ds.d D=distG
cnmpt1ds.j J=TopOpenG
cnmpt1ds.r R=topGenran.
cnmpt1ds.g φGMetSp
cnmpt1ds.k φKTopOnX
cnmpt2ds.l φLTopOnY
cnmpt2ds.a φxX,yYAK×tLCnJ
cnmpt2ds.b φxX,yYBK×tLCnJ
Assertion cnmpt2ds φxX,yYADBK×tLCnR

Proof

Step Hyp Ref Expression
1 cnmpt1ds.d D=distG
2 cnmpt1ds.j J=TopOpenG
3 cnmpt1ds.r R=topGenran.
4 cnmpt1ds.g φGMetSp
5 cnmpt1ds.k φKTopOnX
6 cnmpt2ds.l φLTopOnY
7 cnmpt2ds.a φxX,yYAK×tLCnJ
8 cnmpt2ds.b φxX,yYBK×tLCnJ
9 txtopon KTopOnXLTopOnYK×tLTopOnX×Y
10 5 6 9 syl2anc φK×tLTopOnX×Y
11 mstps GMetSpGTopSp
12 4 11 syl φGTopSp
13 eqid BaseG=BaseG
14 13 2 istps GTopSpJTopOnBaseG
15 12 14 sylib φJTopOnBaseG
16 cnf2 K×tLTopOnX×YJTopOnBaseGxX,yYAK×tLCnJxX,yYA:X×YBaseG
17 10 15 7 16 syl3anc φxX,yYA:X×YBaseG
18 eqid xX,yYA=xX,yYA
19 18 fmpo xXyYABaseGxX,yYA:X×YBaseG
20 17 19 sylibr φxXyYABaseG
21 20 r19.21bi φxXyYABaseG
22 21 r19.21bi φxXyYABaseG
23 cnf2 K×tLTopOnX×YJTopOnBaseGxX,yYBK×tLCnJxX,yYB:X×YBaseG
24 10 15 8 23 syl3anc φxX,yYB:X×YBaseG
25 eqid xX,yYB=xX,yYB
26 25 fmpo xXyYBBaseGxX,yYB:X×YBaseG
27 24 26 sylibr φxXyYBBaseG
28 27 r19.21bi φxXyYBBaseG
29 28 r19.21bi φxXyYBBaseG
30 22 29 ovresd φxXyYADBaseG×BaseGB=ADB
31 30 3impa φxXyYADBaseG×BaseGB=ADB
32 31 mpoeq3dva φxX,yYADBaseG×BaseGB=xX,yYADB
33 13 1 2 3 msdcn GMetSpDBaseG×BaseGJ×tJCnR
34 4 33 syl φDBaseG×BaseGJ×tJCnR
35 5 6 7 8 34 cnmpt22f φxX,yYADBaseG×BaseGBK×tLCnR
36 32 35 eqeltrrd φxX,yYADBK×tLCnR