Metamath Proof Explorer


Theorem cnmpt2nd

Description: The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmpt21.j φJTopOnX
cnmpt21.k φKTopOnY
Assertion cnmpt2nd φxX,yYyJ×tKCnK

Proof

Step Hyp Ref Expression
1 cnmpt21.j φJTopOnX
2 cnmpt21.k φKTopOnY
3 fo2nd 2nd:VontoV
4 fofn 2nd:VontoV2ndFnV
5 3 4 ax-mp 2ndFnV
6 ssv X×YV
7 fnssres 2ndFnVX×YV2ndX×YFnX×Y
8 5 6 7 mp2an 2ndX×YFnX×Y
9 dffn5 2ndX×YFnX×Y2ndX×Y=zX×Y2ndX×Yz
10 8 9 mpbi 2ndX×Y=zX×Y2ndX×Yz
11 fvres zX×Y2ndX×Yz=2ndz
12 11 mpteq2ia zX×Y2ndX×Yz=zX×Y2ndz
13 vex xV
14 vex yV
15 13 14 op2ndd z=xy2ndz=y
16 15 mpompt zX×Y2ndz=xX,yYy
17 10 12 16 3eqtri 2ndX×Y=xX,yYy
18 tx2cn JTopOnXKTopOnY2ndX×YJ×tKCnK
19 1 2 18 syl2anc φ2ndX×YJ×tKCnK
20 17 19 eqeltrrid φxX,yYyJ×tKCnK