| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnmptkk.j |  | 
						
							| 2 |  | cnmptkk.k |  | 
						
							| 3 |  | cnmptkk.l |  | 
						
							| 4 |  | cnmptkk.m |  | 
						
							| 5 |  | cnmptkk.n |  | 
						
							| 6 |  | cnmptkk.a |  | 
						
							| 7 |  | cnmptkk.b |  | 
						
							| 8 |  | cnmptkk.c |  | 
						
							| 9 | 2 | adantr |  | 
						
							| 10 | 3 | adantr |  | 
						
							| 11 |  | topontop |  | 
						
							| 12 | 2 11 | syl |  | 
						
							| 13 |  | nllytop |  | 
						
							| 14 | 5 13 | syl |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 | xkotopon |  | 
						
							| 17 | 12 14 16 | syl2anc |  | 
						
							| 18 |  | cnf2 |  | 
						
							| 19 | 1 17 6 18 | syl3anc |  | 
						
							| 20 | 19 | fvmptelcdm |  | 
						
							| 21 |  | cnf2 |  | 
						
							| 22 | 9 10 20 21 | syl3anc |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 23 | fmpt |  | 
						
							| 25 | 22 24 | sylibr |  | 
						
							| 26 |  | eqidd |  | 
						
							| 27 |  | eqidd |  | 
						
							| 28 | 25 26 27 8 | fmptcof |  | 
						
							| 29 | 28 | mpteq2dva |  | 
						
							| 30 |  | topontop |  | 
						
							| 31 | 4 30 | syl |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 32 | xkotopon |  | 
						
							| 34 | 14 31 33 | syl2anc |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 | 35 | xkococn |  | 
						
							| 37 | 12 5 31 36 | syl3anc |  | 
						
							| 38 |  | coeq1 |  | 
						
							| 39 |  | coeq2 |  | 
						
							| 40 | 38 39 | sylan9eq |  | 
						
							| 41 | 1 7 6 34 17 37 40 | cnmpt12 |  | 
						
							| 42 | 29 41 | eqeltrrd |  |